616 research outputs found

    Spin Hall Conductance of the Two Dimensional Hole Gas in a Perpendicular Magnetic Field

    Full text link
    The charge and spin Hall conductance of the two-dimensional hole gas within the Luttinger model with and without inversion symmetry breaking terms in a perpendicular magnetic field are studied, and two key phenomena are predicted. The sign of the spin Hall conductance is modulated periodically by the external magnetic field, which means a possible application in the future. Furthermore, a resonant spin Hall conductance in the two-dimensional hole gas with a certain hole density at a typical magnetic field is indicated, which implies a likely way to firmly establish the intrinsic spin Hall effect. The charge Hall conductance is unaffected by the spin-orbit coupling.Comment: accepted for publication in Phys. Rev. B; 6 pages, 4 figure

    Mechanism for zirconium oxide atomic layer deposition using bis(methylcyclopentadienyl)methoxymethyl zirconium

    Get PDF
    The mechanism for zirconium oxide atomic layer deposition using bis(methylcyclopentadienyl)methoxymethyl zirconium and H(2)O was examined using ab initio calculations of hydrolysis energies to predict the order of ligand loss. These predictions were tested using in situ mass spectrometric measurements which revealed that the methyl ligand, and 65% of the methylcyclopentadienyl ligands are lost during the zirconium precursor adsorption. The remaining 35% of the methylcyclopentadienyl ligands and the methoxy ligand are lost during the subsequent H(2)O exposure. These measurements agree very well with the predictions, demonstrating that thermodynamic calculations are a simple and accurate predictor for the reactivities of these compounds. (c) 2007 American Institute of Physics. (DOI: 10.1063/1.2824814

    Gorham-Stout case report: a multi-omic analysis reveals recurrent fusions as new potential drivers of the disease

    Get PDF
    BACKGROUND: Gorham-Stout disease is a rare condition characterized by vascular proliferation and the massive destruction of bone tissue. With less than 400 cases in the literature of Gorham-Stout syndrome, we performed a unique study combining whole-genome sequencing and RNA-Seq to probe the genomic features and differentially expressed pathways of a presented case, revealing new possible drivers and biomarkers of the disease. CASE PRESENTATION: We present a case report of a white 45-year-old female patient with marked bone loss of the left humerus associated with vascular proliferation, diagnosed with Gorham-Stout disease. The analysis of whole-genome sequencing showed a dominance of large structural DNA rearrangements. Particularly, rearrangements in chromosomes seven, twelve, and twenty could contribute to the development of the disease, especially a gene fusion involving ATG101 that could affect macroautophagy. The study of RNA-sequencing data from the patient uncovered the PI3K/AKT/mTOR pathway as the most affected signaling cascade in the Gorham-Stout lesional tissue. Furthermore, M2 macrophage infiltration was detected using immunohistochemical staining and confirmed by deconvolution of the RNA-seq expression data. CONCLUSIONS: The way that DNA and RNA aberrations lead to Gorham-Stout disease is poorly understood due to the limited number of studies focusing on this rare disease. Our study provides the first glimpse into this facet of the disease, exposing new possible therapeutic targets and facilitating the clinicopathological diagnosis of Gorham-Stout disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-022-01277-x

    Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane

    Get PDF
    Molecules capable of performing highly efficient energy transfer and ultrafast photo-induced electron transfer in well-defined multichromophoric structures are indispensable to the development of artificial photosynthetic systems. Herein, we report on the synthesis, characterization and photophysical properties of a rationally designed multichromophoric tetracationic cyclophane, DAPPBox^(4+), containing a diazaperopyrenium (DAPP^(2+)) unit and an extended viologen (ExBIPY^(2+)) unit, which are linked together by two p-xylylene bridges. Both ^1H NMR spectroscopy and single crystal X-ray diffraction analysis confirm the formation of an asymmetric, rigid, box-like cyclophane, DAPPBox^(4+). The solid-state superstructure of this cyclophane reveals a herringbone-type packing motif, leading to two types of π···π interactions: (i) between the ExBIPY^(2+) unit and the DAPP^(2+) unit (π···π distance of 3.7 Å) in the adjacent parallel cyclophane, as well as (ii) between the ExBIPY^(2+) unit (π···π distance of 3.2 Å) and phenylene ring in the closest orthogonal cyclophane. Moreover, the solution-phase photophysical properties of this cyclophane have been investigated by both steady-state and time-resolved absorption and emission spectroscopies. Upon photoexcitation of DAPPBox^(4+) at 330 nm, rapid and quantitative intramolecular energy transfer occurs from the ^1*ExBIPY^(2+) unit to the DAPP^(2+) unit in 0.5 ps to yield ^1*DAPP^(2+). The same excitation wavelength simultaneously populates a higher excited state of ^1*DAPP^(2+) which then undergoes ultrafast intramolecular electron transfer from ^1*DAPP^(2+) to ExBIPY^(2+) to yield the DAPP^(3+•) – ExBIPY^(+•) radical ion pair in τ = 1.5 ps. Selective excitation of DAPP^(2+) at 505 nm populates a lower excited state where electron transfer is kinetically unfavorable

    M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation

    Get PDF
    We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC(50) value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC(50) of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC(50) (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active R-state, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13° rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. X-ray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
    corecore