7,327 research outputs found
Optical stark effect in the 2-photon spectrum of NO
A large optical Stark effect has been observed in the two-photon spectrum X(2)Pi yields A(2)Sigma(+)_ in NO. It is explained as a near-resonant process in which the upper state of the two-photon transition is perturbed by interactions with higher-lying electronic states coupled by the laser field. A theoretical analysis is presented along with coupling parameters determined from ab initio wave functions. The synthetic spectrum reproduces the major experimental features
Global atmospheric moisture variability
Research efforts during FY-88 have focused on completion of several projects relating to analysis of FGGE data during SOP-1 and on expanded studies of global atmospheric moisture. In particular, a revised paper on the relationship between diabatic heating and baroclinicity in the South Pacific Convergence Zone (SPCZ) was submitted. A summary of completed studies on diagnostic convective parameterization was presented at the Satellite Meteorology and Oceanography Convergence last February. These investigations of diabatic heating in the SPCZ have demonstrated the requirement for a more quantitative description of atmospheric moisture. As a result, efforts were directed toward use of passive remote microwave measurements from the Nimbus-7 SMMR and the DOD's Special Sensor Microwave Imager (SSMI/I) as critical sources of moisture data. Activities this year are summarized
Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis
Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations
Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters
Photonic quantum technologies are on the verge offinding applications in everyday life with quantum cryptography andquantum simulators on the horizon. Extensive research has beencarried out to identify suitable quantum emitters and single epitaxialquantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangledphoton-pairs. In order to build up quantum networks, it is essentialto interface remote quantum emitters. However, this is still anoutstanding challenge, as the quantum states of dissimilar“artificialatoms”have to be prepared on-demand with highfidelity and thegenerated photons have to be made indistinguishable in all possibledegrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51±5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting forthefirst time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation ofhighly indistinguishable (visibility of 71±9%) entangled photon-pairs (fidelity of 90±2%), enables push-button biexciton statepreparation (fidelity of 80±2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustnessagainst environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeatersand complex multiphoton entanglement experiments involving dissimilar artificial atom
Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots
The development of scalable sources of non-classical light is fundamental to unlocking thetechnological potential of quantum photonics. Semiconductor quantum dots are emerging asnear-optimal sources of indistinguishable single photons. However, their performance assources of entangled-photon pairs are still modest compared to parametric down converters.Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shownnon-optimal levels of entanglement and indistinguishability. For quantum networks, bothcriteria must be met simultaneously. Here, we show that this is possible with a system thathas received limited attention so far: GaAs quantum dots. They can emit triggered polar-ization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguish-ability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity(0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dotentanglement sources in future quantum technologie
Dynamics and energetics of the South Pacific Convergence Zone during FGGE SOP-1 and South Pacific Convergence Zone and global-scale
Significant accomplishments (papers published, conference presentations, and education degrees) are presented. The focus of the current research is outlined. Plans for the coming year are discussed briefly
- …