65 research outputs found

    Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline

    Get PDF
    BACKGROUND: Differential methylation of the two alleles is a hallmark of imprinted genes. Correspondingly, loss of DNA methyltransferase function results in aberrant imprinting and abnormal post-fertilization development. In the mouse, mutations of the oocyte-specific isoform of the DNA methyltransferase Dnmt1 (Dnmt1o) and of the methyltransferase-like Dnmt3L gene result in specific failures of imprint establishment or maintenance, at multiple loci. We have previously shown in humans that an analogous inherited failure to establish imprinting at multiple loci in the female germline underlies a rare phenotype of recurrent hydatidiform mole. RESULTS: We have identified a human homologue of the murine Dnmt1o and assessed its pattern of expression. Human DNMT1o mRNA is detectable in mature oocytes and early fertilized embryos but not in any somatic tissues analysed. The somatic isoform of DNMT1 mRNA, in contrast, is not detectable in human oocytes. In the previously-described family with multi-locus imprinting failure, mutation of DNMT1o and of the other known members of this gene family has been excluded. CONCLUSIONS: Mutation of the known DNMT genes does not underlie familial hydatidiform mole, at least in the family under study. This suggests that trans-acting factors other than the known methyltransferases are required for imprint establishment in humans, a concept that has indirect support from recent biochemical studies of DNMT3L

    Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes

    Get PDF
    Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus–smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus–smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs −112 and −106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus–smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus–smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types

    Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos

    Get PDF
    Purpose: Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Methods: Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. Results: GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. Conclusions: To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos

    New advances in reproductive biomedicine

    Get PDF
    EditorialIrma Virant-Klun, Jeroen Krijgsveld, John Huntriss and Raymond J. Rodger

    Mycotoxin exposure and adverse reproductive health outcomes in Africa: A review

    Get PDF
    It is well established that mycotoxin exposure can have adverse effects on reproductive health resulting to poor reproductive potential. The most studied mycotoxin in relation to poor reproductive health in humans is aflatoxin, although fumonisins, trichothecenes and zearalenone have also been reported to impair reproductive function and cause abnormal foetal development. These potent fungal toxins contaminate many food products making them a prominent agricultural, food safety and public health challenge, especially in Africa due to little or lack of mycotoxin regulation in agricultural products. Neonates can be exposed to aflatoxins in utero, as the toxins pass from mother to the foetus through the placenta. This exposure may continue during breast feeding, to the introduction of weaning foods, and then foods taken by adults. The consequences of aflatoxin exposure in mothers, foetus and children are many, including anaemia in pregnancy, low birth weight, interference with nutrient absorption, suppression of immune function, child growth retardation and abnormal liver function. In males, reports have indicated a possible relationship between aflatoxin exposure and poor sperm quality culminating in infertility. Maternal exposure to fumonisin during early pregnancy has been associated with increased risk of neural tube defects among newborns in regions where maize is the common dietary staple with the possibility of chronic fumonisin exposure. Furthermore, zearalenone has been linked to precocious puberty and premature thelarche in girls, correlating with extremely high serum oestrogen levels. This review presents an overview of the several reports linking aflatoxins, fumonisins, trichothecenes, and zearalenone exposure to poor reproductive health outcomes in Africa, with emphasis on birth outcomes, foetal health and infertility

    Effects of aflatoxin and fumonisin on gene expression of growth factors and inflammation-related genes in a human hepatocyte cell line

    Get PDF
    Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely distributed in maize and maized-based products, often occurring together. The implications of co-exposure to aflatoxin and fumonsin for human health are numerous, but a particular concern is the potential of FB1 to modulate AFB1 hepatotoxicity. This study evaluated the toxicity of these mycotoxins, alone or combined, in a human non-tumorigenic liver cell line, HHL-16 cells, and assessed the effects of AFB1 and FB1 on expression of genes involved in immune and growth factor pathways. The results demonstrated that in HHL-16 cells, both AFB1 and FB1 had dose-dependent and time-dependent toxicity, and the combination of them showed a synergistic toxicity in the cells. Moreover, AFB1 caused upregulation of IL6, CCL20, and BMP2, and downregulation of NDP. In combination of AFB1 with FB1, gene expression levels of IL6 and BMP2 were significantly higher compared to individual FB1 treatment, and had a tendency to be higher than individual AFB1 treatment. This study shows that FB1 may increase the hepatoxicity of AFB1 through increasing the inflammatory response and disrupting cell growth pathways

    Primary differentiation in the human blastocyst : comparative molecular portraits of inner cell mass and trophectoderm cells

    Get PDF
    The primary differentiation event during mammalian development occurs at the blastocyst stage and leads to the delineation of the inner cell mass (ICM) and the trophectoderm (TE). We provide the first global mRNA expression data from immunosurgically dissected ICM cells, TE cells, and intact human blastocysts. Using a cDNA microarray composed of 15,529 cDNAs from known and novel genes, we identify marker transcripts specific to the ICM (e.g., OCT4/POU5F1, NANOG, HMGB1, and DPPA5) and TE (e.g., CDX2, ATP1B3, SFN, and IPL), in addition to novel ICM- and TE-specific expressed sequence tags. The expression patterns suggest that the emergence of pluripotent ICM and TE cell lineages from the morula is controlled by metabolic and signaling pathways, which include inter alia, WNT, mitogen-activated protein kinase, transforming growth factor-beta, NOTCH, integrin-mediated cell adhesion, phosphatidylinositol 3-kinase, and apoptosis. These data enhance our understanding of the first step in human cellular differentiation and, hence, the derivation of both embryonic stem cells and trophoblastic stem cells from these lineages

    On-chip mouse embryo culture: Evaluation of effects of uterine cells-conditioned media on embryo development and gene expression

    Get PDF
    Microfluidics has recently been proposed as a method to overcome the limitations of traditional oocyte and embryo culture methods. In this work, we report the use of a microfluidic polydimethylsiloxane device as promising alternative for in vitro embryo culture, and we have evaluated the effects of cells- conditioned media (CM) on embryo development. The microfluidic device was fabricated using traditional soft-lithographic technique. To produce CM, mouse uterine epithelial cells (Creative Bioarray, USA) were cultured in KSOM (Merck Millipore, UK) for 24 h. The CM was used to culture groups of 12, 1 cell murine embryos (B6C3F1xB6D2F1 strain, EmbryoTech, USA) into a microfluidic device. Control embryos were cultured in the device using KSOM. We compared blastocyst rates of embryos cultured in CM with those obtained using KSOM. The effect of treatment on embryo gene expression was assessed in cDNAs generated from individual stage matched, blastocysts using a custom, real time PCR array. Developmental ability of mouse embryos in the presence of CM was significantly higher (p<0.05) in comparison with control media. Blastocyst rates for the CM (n=15 devices, 180 embryos) and control media (n=15 devices, 180 embryos) groups were 68.9% and 45.1%, respectively. qPCR results showed that expression of Makorin Ring Finger Protein (MKRN, p=0.036), DNA Methyltransferase 3β (DNMT3β, p=0.012), DNA (Cytosine -5-)-Methyltransferase 3-Like (DNMT3L, p=0.043), Histone Acetyltransferase 1 (HAT1, p=0.006), Keratin 18 (KRT18, p=0.028), and Ubiquitin Like With PHD And Ring Finger Domains 1 (UHRF1, p=0.043) was significantly different between the treatment groups. Specifically, we observed in the CM group increased expression of DNMT3β and DNMT3L, which play an important role in early embryo development. Those finding revealed that the new microfluidic device supports mouse preimplantation embryo development in vitro. Uterine epithelial cells-conditioned medium has the potential to enhance blastocyst development. Further investigations are required to identify the mechanism of this effect

    The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes

    Get PDF
    STUDY QUESTION Are there age-related differences in gene expression during the germinal vesicle (GV) to metaphase II (MII) stage transition in euploid human oocytes? SUMMARY ANSWER A decrease in mitochondrial-related transcripts from GV to MII oocytes was observed, with a much greater reduction in MII oocytes with advanced age. WHAT IS KNOWN ALREADY Early embryonic development is dependent on maternal transcripts accumulated and stored within the oocyte during oogenesis. Transcriptional activity of the oocyte, which dictates its ultimate developmental potential, may be influenced by age and explain the reduced competence of advanced maternal age (AMA) oocytes compared with the young maternal age (YMA). Gene expression has been studied in human and animal oocytes; however, RNA sequencing could provide further insights into the transcriptome profiling of GV and in vivo matured MII euploid oocytes of YMA and AMA patients. STUDY DESIGN, SIZE, DURATION Fifteen women treated for infertility in a single IVF unit agreed to participate in this study. Five GV and 5 MII oocytes from 6, 21–26 years old women (YMA cohort) and 5 GV and 6 MII oocytes from 6, 41–44 years old women (AMA cohort) undergoing IVF treatment were donated. The samples were collected within a time frame of 4 months. RNA was isolated and deep sequenced at the single-cell level. All donors provided either GV or MII oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS Cumulus dissection from donated oocytes was performed 38 h after hCG injection, denuded oocytes were inserted into lysis buffer supplemented with RNase inhibitor. The samples were stored at −80°C until further use. Isolated RNA from GV and MII oocytes underwent library preparation using an oligo deoxy-thymidine (dT) priming approach (SMART-Seq v4 Ultra Low Input RNA assay; Takara Bio, Japan) and Nextera XT DNA library preparation assay (Illumina, USA) followed by deep sequencing. Data processing, quality assessment and bioinformatics analysis were performed using source-software, mainly including FastQC, HISAT2, StringTie and edgeR, along with functional annotation analysis, while scploid R package was employed to determine the ploidy status. MAIN RESULTS AND THE ROLE OF CHANCE Following deep sequencing of single GV and MII oocytes in both YMA and AMA cohorts, several hundred transcripts were found to be expressed at significantly different levels. When YMA and AMA MII oocyte transcriptomes were compared, the most significant of these were related to mitochondrial structure and function, including biological processes, mitochondrial respiratory chain complex I assembly and mitochondrial translational termination (false discovery rate (FDR) 6.0E−10 to 1.2E−7). These results indicate a higher energy potential of the YMA MII cohort that is reduced with ageing. Other biological processes that were significantly higher in the YMA MII cohort included transcripts involved in the translation process (FDR 1.9E−2). Lack of these transcripts could lead to inappropriate protein synthesis prior to or upon fertilisation of the AMA MII oocytes. LARGE SCALE DATA The RNA sequencing data were deposited in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo), under the accession number: GSE164371. LIMITATIONS, REASONS FOR CAUTION The relatively small sample size could be a reason for caution. However, the RNA sequencing results showed homogeneous clustering with low intra-group variation and five to six biological replicates derived from at least three different women per group minimised the potential impact of the sample size. WIDER IMPLICATIONS OF THE FINDINGS Understanding the effects of ageing on the oocyte transcriptome could highlight the mechanisms involved in GV to MII transition and identify biomarkers that characterise good MII oocyte quality. This knowledge has the potential to guide IVF regimes for AMA patients. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Medical Research Council (MRC Grant number MR/K020501/1)

    Putative imprinted gene expression in uniparental bovine embryo models

    Get PDF
    Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner
    • …
    corecore