278 research outputs found

    Spectral emission measurement of igneous rocks using a spectroradiometer

    Get PDF
    Spectroradiometer is used for either close or remote identification of rocks not heated to high temperatures. Instrument yields reproducible data spectra with excellent signal-to-noise ratios and readily identifiable spectral details, including differences in subclasses

    Mass spectrometers and atomic oxygen

    Get PDF
    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized

    Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite

    Get PDF
    DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradient

    An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    Get PDF
    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbi

    Deciphering the roles of cell shape and Fat and Dachsous planar polarity in arranging the Drosophila apical microtubule network through quantitative image analysis

    Get PDF
    In epithelial cells, planar polarisation of subapical microtubule networks is thought to be important for both breaking cellular symmetry and maintaining the resulting cellular polarity. Studies in the Drosophila pupal wing and other tissues have suggested two alternative mechanisms for specifying network polarity. On one hand mechanical strain and/or cell shape have been implicated as key determinants, on the other the Fat-Dachsous planar polarity pathway has been suggested to be the primary polarising cue. Using quantitative image analysis in the pupal wing, we reassess these models. We found that cell shape was a strong predictor of microtubule organisation in the developing wing epithelium. Conversely Fat-Dachsous polarity cues do not play any direct role in the organisation of the subapical microtubule network, despite being able to weakly recruit the microtubule minus-end capping protein Patronin to cell boundaries. We conclude that any effect of Fat-Dachsous on microtubule polarity is likely to be indirect, via their known ability to regulate cell shape

    Investigation of the Effect of Tip Tanks on the Wing Loading of a Republic F-84 Airplane in the Ames 40- by 80-foot Wind Tunnel

    Get PDF
    Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron

    Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics and Biodistribution in Multiple Organs

    Get PDF
    The characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT). A spatial resolution of approximately 150 µm through mouse cross-sections allowed us to image blood vessels, the kidneys, the liver and the gall bladder. In particular, MSOT was employed to characterize the removal of indocyanine green from the systemic circulation and its time-resolved uptake in the liver and gallbladder. Furthermore, it was possible to track the uptake of a carboxylate dye in separate regions of the kidneys. The results demonstrate the acquisition of agent concentration metrics at rates of 10 samples per second at a single wavelength and 17 s per multispectral sample with 10 signal averages at each of 5 wavelengths. Overall, such imaging performance introduces previously undocumented capabilities of fast, high resolution in vivo imaging of the fate of optical agents for drug discovery and basic biological research

    Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    Get PDF
    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments

    Friends with Benefits: Social Coupons as a Strategy to Enhance Customers’ Social Empowerment

    Get PDF
    Businesses often seek to leverage customers’ social networks to acquire new customers and stimulate word-of-mouth recommendations. While customers make brand recommendations for various reasons (e.g., incentives, reputation enhancement), they are also motivated by a desire for social empowerment—to feel an impact on others. In several multi-method studies, we show that facilitating sharing of social coupons (i.e., coupon sets that include one for self-use and one to be shared) is a unique marketing strategy that facilitates social empowerment. Firms benefit from social coupons because customers who share spend more and report greater purchase intentions than those who do not. Furthermore, we demonstrate that social coupons are most effective when the sharer’s brand relationship is new versus established. For customers with an established relationship, sharing with a receiver who also has an established relationship maximizes potential impact. Together, these studies connect social empowerment to relationship marketing and provide guidance to managers targeting social coupons
    • …
    corecore