9 research outputs found

    Diversity of Synechococcus at the Martha\u27s Vineyard Coastal Observatory: Insights from Culture Isolations, Clone Libraries, and Flow Cytometry

    Get PDF
    The cyanobacterium Synechococcus is a ubiquitous, important phytoplankter across the worldā€™s oceans. A high degree of genetic diversity exists within the marine group, which likely contributes to its global success. Over 20 clades with different distribution patterns have been identified. However, we do not fully understand the environmental factors that control clade distributions. These factors are likely to change seasonally, especially in dynamic coastal systems. To investigate how coastal Synechococcus assemblages change temporally, we assessed the diversity of Synechococcus at the Marthaā€™s Vineyard Coastal Observatory (MVCO) over three annual cycles with culture-dependent and independent approaches. We further investigated the abundance of both phycoerythrin (PE)-containing and phycocyanin (PC)-only Synechococcus with a flow cytometric setup that distinguishes PC-only Synechococcus from picoeukaryotes. We found that the Synechococcus assemblage at MVCO is diverse (13 different clades identified), but dominated by clade I representatives. Many clades were only isolated during late summer and fall, suggesting more favorable conditions for isolation at this time. PC-only strains from four different clades were isolated, but these cells were only detected by flow cytometry in a few samples over the time series, suggesting they are rare at this site. Within clade I, we identified four distinct subclades. The relative abundances of each subclade varied over the seasonal cycle, and the high Synechococcus cell concentration at MVCO may be maintained by the diversity found within this clade. This study highlights the need to understand how temporal aspects of the environment affect Synechococcus community structure and cell abundance

    Dynamics and functional diversity of the smallest phytoplankton on the Northeast US shelf

    Get PDF
    Author Posting. Ā© National Academy of Sciences, 2020. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 117(22), (2020): 12215-12221, doi: 10.1073/pnas.1918439117.Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the regionā€™s primary productivity than their standing stocks suggest.We thank E. T. Crockford, E. E. Peacock, J. Fredericks, Z. Sandwith, the MVCO Operations Team, and divers of the Woods Hole Oceanographic Institution diving program. This work was supported by NSF Grants OCE-0119915 (to R.J.O. and H.M.S.) and OCE-1655686 (to M.G.N., R.J.O., A.R.S., and H.M.O.); NASA Grants NNX11AF07G (to H.M.S.) and NNX13AC98G (to H.M.S.); Gordon and Betty Moore Foundation Grant GGA#934 (to H.M.S.); and Simons Foundation Grant 561126 (to H.M.S.).2020-11-1

    Sixty years of Sverdrup : a retrospective of progress in the study of phytoplankton blooms

    Get PDF
    Author Posting. Ā© The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 1 (2014): 222ā€“235, doi:10.5670/oceanog.2014.26.One of the most dramatic large-scale features in the ocean is the seasonal greening of the North Atlantic in spring and summer due to the accumulation of phytoplankton biomass in the surface layer. In 1953, Harald Ulrik Sverdrup hypothesized a now canonical mechanism for the development and timing of phytoplankton blooms in the North Atlantic. Over the next 60 years, Sverdrup's Critical Depth Hypothesis spurred progress in understanding of bloom dynamics and offered a valuable theoretical framework on which to build. In reviewing 60 years of literature, the authors trace the development of modern bloom initiation hypotheses, highlighting three case studies that illuminate the complexity, including both catalysts and impediments, of scientific progress in the wake of Sverdrup's hypothesis. Most notably, these cases demonstrate that the evolution of our understanding of phytoplankton blooms was paced by access not only to technology but also to concurrent insights from several disciplines. This exploration of the trajectories and successes in bloom studies highlights the need for expanding interdisciplinary collaborations to address the complexity of phytoplankton bloom dynamics

    Seasons of Syn

    Get PDF
    Ā© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hunter-Cevera, K. R., Neubert, M. G., Olson, R. J., Shalapyonok, A., Solow, A. R., & Sosik, H. M. Seasons of Syn. Limnology and Oceanography. (2019), doi: 10.1002/lno.11374.Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16ā€yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperatureā€limited in winter and spring, but lightā€limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.We would like to thank E. T. Crockford, E. E. Peacock, J. Fredericks, Z. Sandwith, the MVCO Operations Team, divers of the WHOI diving program, and captain Houtler and first mate Hanley of the R/V Tioga for logistical support; S. Laney for assistance with radiometer data processing; and P. Henderson of the Woods Hole Oceanographic Institution (WHOI) Nutrient Analytical Facility for analytical support. This work was supported by U.S. NSF grants OCEā€0119915, OCEā€0530830, OCEā€1031256, OCEā€1655686, DEBā€1145017, and DEBā€1257545; NASA grants NNX11AF07G and NNX13AC98G; Gordon and Betty Moore Foundation grant GGA#934; the Investment in Science Fund, given primarily by WHOI Trustee and Corporation Members; Simons Foundation award 561126; National Defense Science and Engineering graduate fellowship from the U.S. Department of Defense, and the Hibbitt Early Career Fellowship at the Marine Biological Laboratory

    Data from: Physiological and ecological drivers of early spring blooms of a coastal phytoplankter

    No full text
    Climate affects the timing and magnitude of phytoplankton blooms that fuel marine food webs and influence global biogeochemical cycles. Changes in bloom timing have been detected in some cases, but the underlying mechanisms remain elusive, contributing to uncertainty in long-term predictions of climate change impacts. Here we describe a 13-year hourly time series from the New England shelf of data on the coastal phytoplankter Synechococcus, during which the timing of its spring bloom varied by 4 weeks. We show that multiyear trends are due to temperature-induced changes in cell division rate, with earlier blooms driven by warmer spring water temperatures. Synechococcus loss rates shift in tandem with division rates, suggesting a balance between growth and loss that has persisted despite phenological shifts and environmental change

    Temperature, Synechococcus concentration, division rates, and loss rates

    No full text
    File contains tab-delimited columns of date, temperature (degree Celsius), Synechococcus concentration (cells per mL), division rate (1/d), and loss rate (1/d) at the Martha's Vineyard Coastal Observatory for 2003-2016. Unavailable data are indicated with a NaN

    Nutrient data

    No full text
    File contains tab-delimited columns of date, nitrate+nitrite, ammonium, phosphate and silicate concentrations (micromolar) at the Martha's Vineyard Coastal Observatory from 2003-2015. Values are means of 2-3 technical replicates. Missing entries are denoted by NaNs

    Seasonal Succession and Spatial Patterns of Synechococcus Microdiversity in a Salt Marsh Estuary Revealed through 16S rRNA Gene Oligotyping

    Get PDF
    Synechococcus are ubiquitous and cosmopolitan cyanobacteria that play important roles in global productivity and biogeochemical cycles. This study investigated the fine scale microdiversity, seasonal patterns, and spatial distributions of Synechococcus in estuarine waters of Little Sippewissett salt marsh (LSM) on Cape Cod, MA. The proportion of Synechococcus reads was higher in the summer than winter, and higher in coastal waters than within the estuary. Variations in the V4ā€“V6 region of the bacterial 16S rRNA gene revealed 12 unique Synechococcus oligotypes. Two distinct communities emerged in early and late summer, each comprising a different set of statistically co-occurring Synechococcus oligotypes from different clades. The early summer community included clades I and IV, which correlated with lower temperature and higher dissolved oxygen levels. The late summer community included clades CB5, I, IV, and VI, which correlated with higher temperatures and higher salinity levels. Four rare oligotypes occurred in the late summer community, and their relative abundances more strongly correlated with high salinity than did other co-occurring oligotypes. The analysis revealed that multiple, closely related oligotypes comprised certain abundant clades (e.g., clade 1 in the early summer and clade CB5 in the late summer), but the correlations between these oligotypes varied from pair to pair, suggesting they had slightly different niches despite being closely related at the clade level. Lack of tidal water exchange between sampling stations gave rise to a unique oligotype not abundant at other locations in the estuary, suggesting physical isolation plays a role in generating additional microdiversity within the community. Together, these results contribute to our understanding of the environmental and ecological factors that influence patterns of Synechococcus microbial community composition over space and time in salt marsh estuarine waters
    corecore