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Abstract The cyanobacterium Synechococcus is a ubiqui-
tous, important phytoplankter across the world’s oceans. A
high degree of genetic diversity exists within the marine
group, which likely contributes to its global success. Over
20 clades with different distribution patterns have been iden-
tified. However, we do not fully understand the environmen-
tal factors that control clade distributions. These factors are
likely to change seasonally, especially in dynamic coastal
systems. To investigate how coastal Synechococcus assem-
blages change temporally, we assessed the diversity of Syne-
chococcus at the Martha’s Vineyard Coastal Observatory
(MVCO) over three annual cycles with culture-dependent
and independent approaches. We further investigated the
abundance of both phycoerythrin (PE)-containing and phy-
cocyanin (PC)-only Synechococcus with a flow cytomet-
ric setup that distinguishes PC-only Synechococcus from
picoeukaryotes. We found that the Synechococcus assem-
blage at MVCO is diverse (13 different clades identified),
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but dominated by clade I representatives. Many clades were
only isolated during late summer and fall, suggesting more
favorable conditions for isolation at this time. PC-only
strains from four different clades were isolated, but these
cells were only detected by flow cytometry in a few sam-
ples over the time series, suggesting they are rare at this site.
Within clade I, we identified four distinct subclades. The
relative abundances of each subclade varied over the sea-
sonal cycle, and the high Synechococcus cell concentration
at MVCO may be maintained by the diversity found within
this clade. This study highlights the need to understand how
temporal aspects of the environment affect Synechococcus
community structure and cell abundance.

Keywords Cyanobacteria · Microdiversity · ntcA

Introduction

The marine Synechococcus group of cyanobacteria is a
globally important primary producer in the world’s oceans.
This picophytoplankter (∼1 μm diameter) is responsible
for up to 20 % of carbon fixation in coastal systems [19,
25]. Thus, it is important that we understand the factors that
affect Synechococcus abundance and enable it to be eco-
logically important across a wide range of environmental
conditions. One of these key factors appears to be the high
level of diversity contained within the marine Synechococ-
cus lineage. Studies of molecular phylogeny have resolved
isolated strains and environmental sequences into a total
of 20 well-defined clades distributed over three main sub-
clusters (5.1, 5.2, and 5.3) [9, 42]. These clades have been
supported by phylogenies constructed from a variety of loci,
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including rpoC1 [35, 51], ITS [1, 17], narB [30, 32, 33],
ntcA [38, 40], and petB [26]. Clade designation was recently
shown to be congruent across these genetic markers [2]
and multi-locus sequence analysis of core genes provides
evidence that the clades are in fact distinct lineages [26].

This genetic diversity may be representative of physi-
ological or ecological diversity, such that each clade (or
closely related clades) corresponds to an ecotype that occu-
pies a distinct niche [1]. This relationship between genetic
diversity and ecological physiology has been well docu-
mented in the sister genus, Prochlorococcus, where genet-
ically distinct clades show differences in light acclimation
and nutrient utilization [27–29, 41]. Differences in clade
physiology explain vertical distributions of Prochlorococ-
cus in the water column, as well as clade biogeography
across ocean basins [3, 20, 55, 59].

Similar relationships between genetic designation and
physiological characteristics have been shown for some
clades of Synechococcus. For example, strains belonging to
clade III exhibit a motility that is unique to this clade [52,
54]. Clades also exhibit differences in nitrogen (N) utiliza-
tion; some clades are unable to grow on or demonstrate
reduced growth rate with nitrate (clades CRD2 and XV,
respectively; [1, 28]), while others are able to utilize dif-
ferent N sources, such as urea and amino acids [28]. The
response of growth rate to temperature can differ among
clades as well as the response to temperature stress [39].
Marine Synechococcus also exhibit differences in light har-
vesting pigments [1, 7, 15, 47, 53]. Many members of
subcluster 5.1 contain phycoerythrin (PE) in their pigment
complements, and some of these clades can chromatically
adapt to different light environments (clades I, III, XV, and
XVI; [1, 36]). Many members of subcluster 5.2 contain
only phycocyanin (PC) as their light harvesting phycobilip-
igment (type-I pigment, [42]). These pigment distinctions
are not absolute, however, as some strains from subclusters
5.2 and 5.3 contain PE, and some PC-only strains have been
found in subcluster 5.1 (clade VIII). Six et al. [47] suggest
that phycobilisome rod genes have evolved independently
from the rest of the core genome and are likely to have
undergone horizontal gene transfer.

These physiological differences so far have not been suf-
ficient to explain observed clade distributions in the ocean.
Clades often co-occur [6, 11, 40], with reports of as many as
six clades found at once [2]. Nonetheless, biogeographical
and time series studies have begun to identify environmen-
tal factors that may shape some clade distributions. For
instance, clades I and IV are typically found in colder,
nutrient-rich, coastal waters at latitudes greater than 30◦ N
and 30◦ S [59], and members of clades CB4 and CB5 are
also found in coastal waters and in estuaries [5, 6, 17]. Other
clades seem to prefer warmer and more oligotrophic envi-
ronments; clades II and III are typically found in tropical

waters, with clade II having a much wider distribution into
subtropical areas [59].

A complex set of interacting factors likely determine
clade distributions. Abundance will be governed by bottom-
up conditions, such as light, nutrient availability, and tem-
perature; top-down factors, such as grazing and viral lysis
[4, 30, 60]; as well as sideways interactions, such as with
heterotrophic bacteria [46]. These factors change over dif-
ferent time scales, such as across seasons and over water
columns with variable mixing. The time scales of envi-
ronmental changes may contribute to the ability of clades
to simultaneously coexist. Consistent with this idea, time
series studies of clade abundances have demonstrated shift-
ing dominance. In California coastal waters, Tai and Palenik
[51] found that clades I and IV were always dominant, but
with changing relative abundance over the seasonal cycle,
while clades II and III only appeared during autumn and
even then at relatively low abundance. In the Gulf of Aqaba,
Post et al. [40] observed a succession of clades across
the transition from winter mixing to summer stratification,
which led to insights of possible preferred nutrient environ-
ments for clades I, III, and V/XII. These studies highlight
the need to understand how temporal aspects of the envi-
ronment shape and maintain Synechococcus diversity. At
present, there is little knowledge of how seasonal environ-
mental changes affect clade abundances in North Atlantic
coastal waters, including on the New England Shelf. To bet-
ter understand how clade patterns may change over time,
we used ntcA clone libraries and culture isolations to assess
the diversity of Synechococcus at the Martha’s Vineyard
Coastal Observatory (MVCO) over three annual cycles. We
further investigated the abundance of both PE-containing
and PC-only Synechococcus in these coastal waters by ana-
lyzing time series samples with a flow cytometric setup that
separates PC-only Synechococcus from picoeukaryotes.

Materials and Methods

Sample Collection

Seawater samples were collected near the MVCO offshore
tower (41◦ 19.500′ N, 70◦34.0′ W) or at the offshore
node (41◦ 20.195′ N, 70◦ 33.3865′ W); ∼3 km from the
south shore of Martha’s Vineyard, MA (Fig. 1) at roughly
bimonthly-to-monthly intervals over a 3-year period from
2010–2012 (43 total samples). Seawater was collected at
2, 6, 10, and 15 m depth with Niskin bottles attached
to a rosette sampler or at the surface via bucket sample.
Glutaraldehyde was added to a 5-mL aliquot of the water
sample to a final concentration of 0.1 % by volume for
later flow cytometric analysis. These samples were incu-
bated for 10 min at room temperature before being frozen in
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Fig. 1 Map showing location of the Martha’s Vineyard Coastal Obser-
vatory (indicated by red dot on inset map) and surrounding shelf
waters. Bathymetric contours are shown for 100 m, and for 500 m to
3000 m in 500-m intervals

liquid N2. Samples for nutrient analysis were immediately
filtered through a 0.2 μm Sterivex� filter into acid-washed
vials and frozen at −20 ◦C. Samples were analyzed for
phosphate, ammonium, silicate, and combined nitrate +
nitrite by standard autoanalyzer techniques at the Woods
Hole Oceanographic Institution Nutrient Analytical Facil-
ity (Woods Hole, MA). Only surface water samples were
used for subsequent DNA extraction and culture enrich-
ments (see below). Near continuous measurements of water
temperature and salinity were obtained with a MicroCat
CTD (SeaBird Electronics) deployed on the MVCO off-
shore tower at 4 m below mean water level. When there
were short gaps in this data record, MicroCat data from the
MVCO offshore node (12 m depth) were substituted. These
records have been previously shown to be very similar
[37].

Flow Cytometry Analysis

A modified Epics V flow cytometer (FCM; Coulter Elec-
tronics Corp.) interfaced with a Cicero acquisition system
(Cytomation, Inc.) was used to analyze preserved water
samples. The instrument was equipped with a 5-W argon ion

laser (Coherent Innova 90-5) and photomultipliers for three
wavelengths of fluorescence detection and forward light
scattering. Excitation was at 515 nm (300 mW) and a 540
long pass barrier filter was used to eliminate scattered laser
light from the fluorescence detectors. Fluorescent emissions
were split by successive dichroic mirrors and interference
filters to measure wavelength bands of 562–588 nm (PE flu-
orescence), 610–660 nm (PC fluorescence), and 660–700
(chlorophyll fluorescence) (see Fig. S1 for schematic and
filters used). Forward light scattering was measured at ∼3◦–
19◦ above the axis of the laser beam. Samples were allowed
to thaw in water before analysis and were injected into
the sheath flow (MilliQ water, Millipore) by a peristaltic
pump (Harvard Apparatus) at 0.1 mL min−1. Polystyrene
microspheres (Polysciences, Inc.) of diameter 0.5 μm (poly-
chromatic) and 1.0 μm (red-fluorescing) were measured as
reference particles.

PE-containing Synechococcus were determined from
characteristic PE fluorescence values and forward light scat-
tering [31]. PC-only Synechococcus were determined from
values of PC fluorescence, PC-to-chlorophyll fluorescence
ratio, and forward light scattering. These features allowed
separation and enumeration of PC-only Synechococcus
from picoeukaryotes. Values of these parameters fell within
a well-confined range for cultures (Fig. S2), and these
values were used to guide analysis of field samples. Specif-
ically, an event was designated as a PC-only Synechococcus
if it did not show any PE fluorescence, had minimum val-
ues of 1.5 · 104 arbitrary fluorescence units for both PC
and chlorophyll fluorescence, and had a PC:chlorophyll flu-
orescence ratio of >0.5 but <1.0. Cell concentration was
determined from sample flow rate (pump rate) and analysis
time.

Synechococcus Isolation

On selected days (see markers in Figs. 2 and 7 and dates
in Fig. S4), surface seawater was prefiltered over a 20-
μm Nitex� mesh. Filtrate was then gravity filtered through
either 1- or 2-μm polycarbonate filters (Poretics) to exclude
larger cells. The final filtrate was amended with nutrients
at one third the concentrations described for SNAX media
[53]. Cycloheximide was added at a final concentration
of 50 μg mL−1 to prevent growth of eukaryotic phyto-
plankton and nanoflagellate grazers. Tubes were incubated
near ambient seawater temperature with light levels of 30–
80 μmol quanta m−2 s−1. After 4–6 weeks, enrichments
were visually inspected before transfer into fresh SNAX
media (full strength) and then routinely transferred approx-
imately every 4 weeks. After 2–3 months, any enrichment
incubating at or below 12 ◦C was moved to a higher tem-
perature (15–18 ◦C). For selected tubes, 2- to 4-month
old enrichments were plated out onto 0.8 % agar SNAX
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plates with 2 mM NaSO3; agar was cleaned as described
by Waterbury et al. [53]. Plates were incubated for approx-
imately 1 month until single colonies of Synechococcus
could be identified either visually or by epifluorescence.
Single colonies were picked and inoculated into liquid
media. This processes was repeated for some isolates, but
not all. For longer-term culture maintenance, isolates were
grown in SN media [53] or a variation of SN (half nutrient
concentrations of SN with ammonium at 5× concentra-
tion in SNAX, termed “SNAV”). Of these single isolates,
we selected 148 to be identified by genotyping of ntcA, an
N-regulatory gene. Isolates were selected on the basis of dif-
ferent pigment colors (peach, orange, golden, green, etc.)
and colony morphologies (size of colony, raised, sunken,
circular or polygons, etc.). Isolates for which there was a
sequence discrepancy in the clone replicates (see below)
were not used and presumably not clonal.

Spectral Analysis

To characterize pigment types of selected cultures, in vivo
fluorescence excitation and emission spectra were obtained
for cell suspensions with a SpectraMax M3 (Molecular
Devices) spectrofluorometer. For the emission spectra, exci-
tation was at 515 nm and emission measured from 530 to
700 nm at 2 nm increments, with a 530 long pass cutoff fil-
ter. Emission at 680 nm (Chl maximum) was measured from
400–660 nm at 2 nm increments with a 665 long pass cutoff
filter. Cultures were determined to contain only PC (desig-
nated as type 1 [47]) if they did not show a representative
PE peak (emission maximum between 530 and 580 nm), but
rather a peak between 600 and 650 nm [56].

To detect the presence of phycoerythrobilin (PEB) and
phycourobilin (PUB) bound to PE, and the ratio of these

phycobilins, PE emission at 585 nm was measured over the
range 400-570 nm with a 570 nm long pass cutoff filter.
Beginning at 550 nm, there was noticeable contribution due
to stray light from the spectrofluorometer excitation source.
This was between 2 and 16 % of the measured relative
fluorescence value of isolate excitation spectra. To correct
for this problem, excitation spectra of fresh media blanks
(either SN or SNAV) were subtracted from these sample
excitation spectra. Presence of PUB was determined if PE
excitation spectra contained a peak or noticeable shoulder at
∼495 nm and if maximum Chl excitation fluorescence was
between 540 and 550 nm. A PUB-lacking phenotype (PEB-
only, designated as type 2) was characterized by no shoulder
or peak at ∼495 nm and by shifted Chl excitation maxi-
mum towards 560–570 nm. PUB:PEB ratio was calculated
as fluorescence excitation at 495 nm to that at 550 nm with
corrected spectra. Correction to spectra did not influence
pigment classification and ratio calculations varied less than
8 % before and after correction. Strains were designated as
pigment type 3a if PUB:PEB ratio was low (∼0.4), and type
3b if PUB:PEB ratio was moderate (∼0.6–0.8) [10, 47].

Only a subset of the entire culture collection was char-
acterized (∼ one strain representative per unique sequence).
Strains that were not analyzed were assumed to have the
same major phycobiliproteins as strains with the same cul-
ture color and clade type (i.e., if a strain color was peach
and belonged to clade I, it was classified as containing PE,
see Table S1).

Environmental Sample DNA Extraction and ntcA PCR
Amplification

On selected days (dates marked on Figs. 2 and 7), 2–
3 L of surface seawater was prefiltered through a 20-μm
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Fig. 2 Cell concentration of PE-containing Synechococcus and PC-
only Synechococcus for 2010–2012 at MVCO. PE-containing Syne-
chococcus are represented by open circles and PC-Synechococcus by
diamonds. Color of circle markers indicate samples used for either
clone library construction (gray), culture enrichments (black), or both

(half and half). Dotted vertical lines indicate dates when samples were
taken for either clone libraries or culture enrichments (depending on
respective color), but not for flow cytometric analysis. Solid black lines
indicate start of years



280 K.R. Hunter-Cevera et al.

Nitex� mesh and then filtered onto 0.2-μm Sterivex� car-
tridge filters (Millipore) under vacuum pressure of no more
than 40 kPa. Approximately 1.8 mL of DNA cell lysis
buffer (Qiagen) was added to each cartridge before freez-
ing and storage at −80 ◦C. For DNA extraction, samples
were thawed on ice and, to break open cells, approximately
200 μL of 0.5-mm zirconia-silica beads (BioSpec Prod-
ucts) were added to the cartridges, which were then shaken
vigorously at 2500 rpm for 10 min. Continued DNA extrac-
tion was carried out with Qiagen Purgene reagents but with
the modified procedure described in Palacios et al. [34].
DNA concentration was determined with a NanoDrop 2000
Spectrophotometer (ThermoScientific). Depending on the
sample, 120 to 1200 ng of DNA template was added to PCR
reactions with the degenerate 1F/4R primer pair [38]. Final
primer concentration was 2 μM in a total reaction volume
of 50 μL with Qiagen Taq PCR Master Mix Kit reagents.
BSA was added at 0.2 mg mL−1 final concentration. PCR
reactions were performed on a GeneAmp PCR System 9700
thermocycler (Applied Biosystems), with an initial denatu-
ration period of 4 min at 94 ◦C; followed by 40 cycles of
1 min at 94 ◦C, 1 min at 45 ◦C, 1 min at 72 ◦C; and then a
final extension step at 72 ◦C for 7 min.

Culture Isolate DNA Extraction and ntcA PCR
Amplification

Approximately 2 mL of dense culture isolate was cen-
trifuged at 9300×g for 6 min to pellet cells, and DNA
was extracted from this pellet with a Qiagen DNeasy Plant
Kit, following manufacturer’s instructions with the excep-
tion of final elution volume (75 μL). Approximately 10–
30 ng of DNA was added to PCR reactions with 1AF and
4AR primers (targeted Synechococcus primers, [38]). Final
primer concentration was 2.5 μM in a total reaction volume
of 50 μL with Qiagen Taq PCR Master Mix Kit reagents.
BSA was added at 0.2 mg mL−1 final concentration. Reac-
tions were preformed on a GeneAmp PCR System 9700
thermocycler (Applied Biosystems), with an initial denatu-
ration period of 4 min at 94 ◦C; followed by 30 cycles of
1 min at 94 ◦C, 30 s at 55 ◦C, 30 s at 72 ◦C; and then a final
extension step at 72 ◦C for 7 min.

ntcA Clone Libraries

All PCR products (an expected 449-bp fragment), from
both the environmental and culture isolates, were gel puri-
fied with a Qiagen Qiaquick gel extraction kit. Cleaned
products were cloned into TOPO vectors for sequencing
(TOPO TA Kit, Invitrogen) and transformed into chemi-
cally competent E. coli TOP10 cells (Invitrogen) following
manufacturer’s instructions. For isolates, at least five posi-
tive colonies (determined by blue/white selection on X-Gal,

kanamycin LB plates) were picked. Plasmids were obtained
via automated plasmid purification with a BiomekFX at the
Josephine Bay Paul Center Keck Facility (Marine Biolog-
ical Laboratory, Woods Hole, MA). Sequencing reactions
used BigDye Terminator chemistry (Applied Biosystems)
and contained at least 200 ng of purified plasmid and M13
reverse primer (15 μM, from TOPO kit). Sequencing was
performed at the Josephine Bay Paul Center Keck Facility
with a 3730 DNA Analyzer (Applied Biosystems). Primer
and vector sequences were removed and resulting sequences
were identified by BLAST search against ntcA accessions
in NCBI Genbank. Sequences were manually evaluated and
corrected if necessary from chromatograms. Synechococ-
cus ntcA sequences were deposited in NCBI GenBank with
accession numbers KR360758–KR361175, KR364942 for
environmental sequences, and KR361176–KR361318 for
isolate sequences.

Phylogenetic Analysis

Sequences identified as ntcA were aligned with the
ClustalW algorithm in BioEdit (version 7.2.0, [14]). Oper-
ational taxonomic unit (OTU) construction and rarefac-
tion analysis was carried out in mothur v.1.23.1 [44] with
the furthest neighbor clustering algorithm. Distinct OTUs
were designated at a 10 % dissimilarity cutoff. Fourteen
sequences were found that could cluster with either OTU
IC or OTU IB (see below) based on distance, and these
sequences were randomly assigned to either OTU (see
Table S2). Phylogenetic reconstructions were carried out
in the ARB software package (version 5.3, Ludwig et al.
2004) with a maximum likelihood approach using RAxML
[48] and a GTR GAMMA rate substitution model. Boot-
strap analysis for support of tree branches was also carried
out in ARB with rapid bootstrap analysis and 500 sample
trees.

Results

Environmental Conditions

Temperature at MVCO exhibited large seasonal fluctua-
tions from a minimum of around 0 ◦C up to a maximum
of 22 ◦C during the 3-year period of this study (Fig. 7a).
Salinity was typically within the range of 31–32.5. The con-
centration of nitrate + nitrite was usually below 1 μM,
with the majority of the samples below 0.5 μM and often
at the limit of detection for the autoanalyzer technique
(0.05 μM) (Fig. 7b). Higher nitrate + nitrite concentrations
(0.75–1 μM) occasionally occurred during fall. The con-
centration of phosphate was also usually low (typically
< 0.25 μM).
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Flow Cytometry Analysis

Consistent with our previous reports for this site [18],
cell abundance of PE-containing Synechococcus followed
a repeatable seasonal pattern of low wintertime concentra-
tions of a few hundred cells mL−1 to greater than 105 cells
mL−1 in summertime (Fig. 2). Large changes in abundance
(an order of magnitude) were observed during the late sum-
mer and fall. By contrast, only a few samples over three
seasonal cycles appeared to contain signatures that matched
our criteria for identification as a PC-only Synechococcus
(see Fig. S2 for an example). The maximum observed con-
centration (∼3000 cells mL−1) was roughly fourfold less
than that of the concurrent PE-containing Synechococcus
(∼13,800 cells mL−1). The majority of small (<∼2 μm),
non-PE-containing cells were classified as picoeukaryotes
(Fig. S2).

Spectral Analysis

Isolates belonging to clades I, II, III, VI, VII, CB5, 5.2MV2,
and 5.3I demonstrated excitation and emission spectra con-
sistent with the presence of PE. Isolates belonging to clades
VI, CB5, and 5.2MV2 appeared to lack PUB and demon-
strated type 2 pigment spectra (Figs. 3 and S5). Emission
maxima occurred at 574–578 nm and Chl excitation maxima
at 554–566 nm. Interestingly, isolates of clade I were either
of type 2 or appeared to contain PUB in low amounts (type
3a spectra) (Figs. 3 and S5). Isolates belonging to clades II,
III, and 5.3I all appeared to contain PUB and were desig-
nated as either type 3a or 3b based on PUB:PEB ratio. Type
3 spectra had emission maxima from 564 to 574 nm and
Chl excitation maxima from 542 to 548 nm. No seasonality

was evident in the occurrence of PUB-containing or PUB-
lacking strains from isolations (data not shown), and both
types were found in almost all enrichments.

Isolates belonging to clades VIII, CB4, 5.2MV1, and
5.2MV3 did not demonstrate characteristic excitation or
emission peaks of PE and were designated as type 1 (only
contained PC). Emissions peaks for these isolates were in
the range of 648–658 nm and Chl excitation peaks within
622–630 nm. Despite similar pigment types, isolates exhib-
ited a range of colors (Fig. 4). Synechococcus that contained
only PEB appeared as brown, dark red, pink, or peach.
Strains with PUB appeared as pink, peach, or orange. Syne-
chococcus that contained only PC were dark bluish-green,
green, or light yellow-green.

Diversity of Environmental Sequences

We obtained a total of 419 ntcA sequences from eleven
amplicon libraries. Of these, 229 sequences were unique
(i.e., different nucleotide sequences). The majority of the
sequences (∼97 %; n = 408) belonged to clade I; ten
sequences belonged to clade IV; and only 1 belonged to
clade CB4 (Fig. 5). There was considerable diversity within
the clade I sequences, and OTU clustering separated these
into four distinct subclades (Figs. 6 and S3). Subclade
IE grouped with reference strain WH8016, but the other
subclades (IA, IB, and IC) did not group with reference
strains WH8020 and CC9311 (for which ntcA sequences
are available). These three subclades do not have previ-
ously known representatives in the ntcA tree and might be
novel, but we cannot be certain they are not related to sub-
clades previously observed with other markers. They could
be related to the subclades observed by Tai and Palenik
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Fig. 3 In vivo normalized excitation and emission spectra for 5
different isolates, representative of pigment types 1, 2, 3a, and 3b.
a Normalized emission spectra (excitation at 515 nm), indicating
presence or absence of PE (characteristic peak at 550–580 nm). b Nor-
malized excitation spectra for chlorophyll emission at 680 nm for the
same isolates, confirming presence or absence of PE. c Normalized
excitation spectra for PE emission at 585 nm, illustrating presence or

absence of PUB (peak or shoulder at ∼495 nm). Strain MV0610 is of
pigment type 3b (medium PUB:PEB ratio), strain MV0801 of type 3a
(low PUB:PEB), MV308 and MV0507 of type 2 (no PUB, PEB-only
PE), and strain MV0216 of pigment type1 (PC-only). Strains belong to
the following clades: IC for MV1001 and MV1308, VI for MV0507,
5.3I for MV0610, and 5.2MV1 for MV0216
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Fig. 4 Cultures of
representative strains for each
clade and subclade isolated from
MVCO. Two strains are shown
for each of clades II and
5.2MV1 to demonstrate range of
color differences. See Figs. 3
and S5 for representative
excitation and emission spectra
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[51] in California coastal water or clade I strains analyzed
by Mazard et al. [26]. Sequencing of the rpoC1 or petB
regions for these strains would be needed to resolve this.
Subclade IC sequences were found to dominate in all sam-
ples, ranging from 56 to 90 % of the sequences in each
clone library (Fig. 6). The second most abundant subclade
in the spring and summer libraries was IB, suggesting that
this subclade made up more of the population at this time of
the year. Subclade IE sequences appeared in samples taken
in late summer through early winter, and subclade IA only
appeared in late fall 2010. The most diverse Synechococ-
cus populations were observed in the late summer and early
fall, and they included sequences from clade IV and clade
CB4, as well as from subclade IA. However, members of
these clades and subclade (IV, CB4, IA) appeared to be rela-
tively rare in the environment. Two subclades based on OTU
clustering were also identified within clade IV (IVA and
IVB).

Diversity of Isolates

From the 17 enrichments, 143 isolates were identified from
their ntcA gene sequences. Of these, 50 unique strains were
identified (i.e., different ntcA sequences). Isolates with iden-
tical ntcA sequences did occur not only within the same
enrichment but also across different enrichments, with orig-
inal sample collection dates sometimes separated by months
(see Table S1). Analysis of ntcA phylogeny showed that
the strains belonged to 12 different clades that spanned the
three subclusters (Fig. 5). Isolates mapped to known clades
I, II, III, VI, VII, and VIII of subcluster 5.1; three clades
of subcluster 5.2, including CB4 and CB5; and one clade
of subcluster 5.3 (5.3I/X). Strains also clustered into two
other clades, belonging to subcluster 5.2 that did not match
to other known strains. These clades have been labeled as
5.2MV1 and 5.2MV2 until confirmation of their status as
either novel or known can be determined (strain representa-
tives may exist for which phylogenetic markers other than
ntcA have been sequenced). Strains of clade 5.2MV1 con-
tained PC as their primary pigment, whereas the one strain
of clade 5.2MV2, MV1218, contained PE (see Table S1).

We have designated isolates that clustered closely with
reference strain WH5701 as clade 5.2MV3.

Clade I isolates belonged to two subclades, IC and IE,
observed from clone library sequences. Representatives of
these subclades were consistently recovered in cultures from
enrichments throughout the time series analysis (Figs. 7c
and S4), which spanned a wide range of temperatures, light
levels, and nutrient concentrations (Fig. 7a, b).

Surprisingly, we also isolated strains considered more
common to subtropical and tropical waters (i.e., clades
II, III, and VII [40, 59]). Isolates of such clade mem-
bers only occurred in late summer and early fall. Clade II
types were isolated during September (2011 and 2012) and
October (2012) and clade III was isolated during August
and September (2012). Clade VI isolates were also only
obtained in late summer and early fall and clade VII was
only found during the fall. In general, isolations of clades
II, III, VI, VII, CB5, and 5.3I tended to occur when water
temperature was relatively warm (17–20 ◦C) and nitrate +
nitrite concentration was relatively low (<0.5 μM, Fig. 7).
The frequency of isolation of these clades was much lower
than for clade I representatives (Fig. S4).

We were able to culture PC-only pigment type strains
from all but a few of the enrichments from MVCO (Fig. S4).
Although not all of these isolates were sequenced (Fig. S4),
those that were fell into clades VIII, CB4, 5.2MV1, and
5.2MV3 (Fig. 5). Isolation of these PC-only strains over the
entire enrichment time series suggests that they were persis-
tent members of the Synechococcus community with a year
round presence at MVCO.

Discussion

Synechococcus Diversity at MVCO

From culture-dependent and culture-independent
approaches, we find that the Synechococcus assemblage
observed throughout the year at MVCO is diverse. Mem-
bers of 13 different clades spanning all 3 known subclusters
of marine Synechococcus were identified, but members
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Fig. 5 Phylogenetic tree
constructed from ntcA
sequences, illustrating the
relationships between known
clade representatives (in black),
clone library sequences (red),
and culture isolates (blue). Clade
assignments for sequences were
made by identifying the closest
known clade representative or
were assigned to possibly novel
clades (designated as 5.2MV1
and 5.2MV2) if sequences did
not cluster with known strains.
Bootstrap values greater than
65 % are shown on branches

of clade I dominate the Synechococcus population over
the entire year. Below we discuss and highlight possible

reasons for the prevalence and occurrence of these clades at
MVCO.
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Fig. 6 Relative abundance of
ntcA clone library sequences
belonging to 7 distinct OTUs for
11 samples taken between July
2010 and September 2011.
Shades of blue indicate OTUs
that belong to clade I,
orange/yellow indicate OTUs
that belong to clade IV, and
green indicates the OTU that
belongs to clade CB4. In the
legend, n indicates total number
of sequences retrieved for each
OTU over the entire time
series.The number of sequences
retrieved for each library are
indicated by the histogram in the
top panel

0

20

40

60

N
um

be
r 

of
 c

lo
ne

s
 p

er
 li

br
ar

y

Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
ab

un
da

nc
e

2010 2011

IA, n=4
IC, n=313
IB, n=73
IE, n=18
IVA, n=8
IVB, n=2
CB4, n=1

Clade I and Subclade Diversity

This dominance of clade I is consistent with the known bio-
geography of clade I, which is primarily found in cooler,
higher nutrient, coastal waters [7, 17, 51, 59], and has been
shown to make up a majority of the Synechococcus assem-
blage in surrounding shelf areas [2]. While a preference for
cooler water is likely to be a key factor explaining the pres-
ence of clade I at MVCO, the ability to survive colder winter
water temperatures (∼0–4 ◦C) may also contribute to clade
I dominance at this site. Recently, Pittera et al. [39] demon-
strated that clade I strains were able to grow at temperatures
lower (∼10–15 ◦C) than tolerated by strains from clades II
and V. These authors also demonstrated that clade I strains
were more tolerant of cold stress. At MVCO, strains of
clade I were isolated from water at a range of temperatures
(Fig. 7), but notably from water at ∼4◦C, indicating that
cells were still viable during this time. The PE-containing
Synechococcus population reaches a minimum cell con-
centration of a few hundred cells per mL−1 during winter
(Fig. 2), and the ability to survive these colder temperatures
may be an important factor that allows this population to
“overwinter” until more favorable spring conditions.

Within clade I, we also found significant diversity at
the subclade level, such that four different subclades could
be resolved in the clone library sequences (Figs. 6 and
S3). While not strictly quantitative, relative abundances of
sequences in our clone libraries suggest that not all of
these subclades are equally represented when they co-occur.
While subclade IC appears to be dominant throughout the
year, subclades IB and IE appeared to increase in rela-
tive abundance at different times of year (spring-summer,
summer-early winter, respectively). This may indicate pos-
sible differences in environmental preference, but the small

number of clone libraries in our study (n = 11), combined
with the possible biases in this data type, preclude definitive
investigation of relationships between environmental factors
and subclade relative abundances. Given that clade I appears
to be dominant, it will be important to understand how each
subclade affects and contributes to this dominance as well
as seasonal cell abundance patterns.

Interestingly, both pigment types 2 and 3a (no PUB and
low PUB, respectively) were found among clade I isolates
for both subclade IC and IE. To our knowledge, this is the
first instance of PEB-only clade I strains. Other clade I rep-
resentatives examined to date have contained PUB [1, 11,
53]. It is unknown whether this spectral phenotype results
from a lack of PE-II subunit or associated genes [47] or can
be achieved by chromatic adaption (CA), as clade I strains
have been shown to exhibit type IV CA [36, 47]. The preva-
lence of low or no PUB phenotype among these isolates may
reflect a strong pressure for efficient absorption of green
light, which often predominates at coastal locations. It has
long been appreciated that there are different geographical
distributions of PUB-containing PEs, with higher PUB:PEB
types dominating in the open ocean and low or no PUB
types more prevalent nearshore [16, 31, 45, 57, 58]. This is
thought to be an adaptation (or acclimation) to the in situ
light environment, where PUB allows better absorption of
blue, open water (PUB maximum absorption ∼495 nm),
while PEB better absorbs greener, coastal water (maximum
absorption ∼550 nm).

Isolation and Detection of Other Clades

We were able to culture representatives of clades that have
typically been found in either warmer or more oligotrophic
environments (e.g., clades II, III, VII, 5.3I), but only in
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Fig. 7 a Incident radiation (MJ m−2) (gray line) and water tempera-
ture (◦C) at 4 m depth (black line) for 2010–2012. b Concentration of
nitrate + nitrite (μM)(gray line) and inorganic phosphate (μM)(black
line). c Occurrence of each clade in either clone library or enrichment
for 2010–2012. Colors represent different clades or subclades, also

separated on different lines. Clades detected by clone library sequence
are designated by an open circle, while an isolate representative is des-
ignated by a filled square. Note that both clone library data and culture
isolation data are only available for one sample

late summer and early fall. Ahlgren and Rocap [2] found
clades II and 5.3I at an outer shelf location (304 km south
of MVCO) and detected clade III in samples from the
Gulf Stream. One possibility for these clade occurrences at
MVCO is that they are advected onto the inner New England
shelf from more offshore locations and can only survive at
this location during late summer and fall. The general circu-
lation on the New England Shelf is part of the larger shelf
circulation of the Middle Atlantic Bight, which is character-
ized by a southwestward along-shelf flow of relatively fresh
water, with across-shelf offshore currents at the surface and
bottom and onshore currents in the middle of the water col-
umn [24]. Shelf water is separated from saltier slope water
by a shelf-slope front, but exchanges between these water
types can occur due to frontal instabilities [13], eddies [12],
warm-core ring shelf interactions [8, 21], and saline intru-
sions at the seasonal pycnocline [23]. Locally, there is a
counterclockwise recirculation just south of MVCO, which
is strongest in the summer months [22]. Slope water intru-
sions plus this recirculation feature could make it possible
for clades growing in warmer, saltier water to be advected
and then retained near MVCO. During summer, water

temperature is warm for this location (∼20 ◦C) and nitrate
levels are typically low or undetectable (Fig. 7b), such
that conditions may allow persistence of clades that would
not typically thrive in coastal waters at other times of the
year.

Clades VI, VIII, and CB5 were also only isolated dur-
ing late summer and fall. Noticeably, this is when water
temperature was relatively warm. This is most apparent for
clade VI, which was cultured from seven different enrich-
ments, but only when water temperature at time of sampling
was greater than 16 ◦C. The global distribution of clade VI
is ambiguous (previous studies utilized probes that could
not separate V, VI, and VII from one another [11]). In
general, clade VI representatives have been isolated from
coastal environments (Woods Hole Harbor, [53]; East Sea
and East China Sea, [7]), suggesting tolerance or preference
of coastal conditions. Clade CB5 has also been isolated from
estuarine or coastal locations [6, 7]. Representatives of both
VI and CB5 were of pigment type 2, which as stated above,
can allow better absorption of green light that is prevalent
in coastal waters, and may contribute to their presence at
MVCO.
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Interestingly, clade IV, which has been reported to co-
occur with clade I in other coastal waters [59], may have
lower relative abundance at MVCO. Strain representatives
were not able to be isolated and only ∼2 % of the clone
library sequences belonged to this clade. While we cannot
be sure that biases in clone libraries and culture isolations
are not a factor, it may be that this clade is very rare at
MVCO. This is consistent with observations of Ahlgren and
Rocap [2] who found clade IV to be much less abundant
than clade I at outer shelf locations (80–304 km south of
MVCO). This is different from other coastal locations for
which the abundance of clade IV usually matches or exceeds
that of clade I [51]. The potentially low abundance of clade
IV at MVCO raises interesting questions as to the phys-
iological differences between these two clades and why,
for this coastal system, clade I is much more abundant. As
highlighted by Ahlgren and Rocap [2], these questions are
relevant for the wider shelf region of the northern Middle
Atlantic Bight.

PC-Only Synechococcus

Strains of Synechococcus that only have PC as their light-
harvesting pigment have been isolated previously from
either estuarine or nearshore coastal waters [6, 7, 11, 15,
53], and sequences that match these strain representatives
have been found in similar regions [5, 6, 17]. PC-only
Synechococcus are well suited to absorb the quality of
light found in these more turbid waters [49, 50]. Given
the nearshore location of MVCO, it is not surprising then
that PC-only Synechococcus strains were isolated. How-
ever, consistently low to undetectable cell concentrations
from flow cytometry analysis suggest that these strains may
not be ecologically relevant at MVCO. These strains may
have been transported from more estuarine sites and then
grow poorly in the environmental conditions at this loca-
tion. Although the site is exposed to the open shelf, it is
located on the inner shelf only 3 km from the south shore of
the island of Martha’s Vineyard. Another hypothesis is that
these organisms are found in the benthos at MVCO (water
column 15 m deep), such that storms or other mixing events
could transport them to the surface. The sudden appearance
and then rapid decline of PC-only Synechococcus in sam-
ples from October 2010 (Fig. 2, separated only by a week) is
consistent with a hypothesis of a population advected to the
site (either from shore or the bottom) but not able to thrive.

The PC-only Synechococcus strains appeared to flourish,
however, in the culture conditions, and in fact dominated
many enrichments (Fig. S4). The media recipe used to cul-
ture and maintain the strains contained only 75 % seawater.
Many members of subcluster 5.2 are halotolerant, such that
they do not require elevated salt requirements for growth
[43]. If these strains grow better in lower salinity, then the

enrichment conditions may have selected for these repre-
sentatives. Anecdotal observations from our enrichments
also suggest that these strains may persist at background
levels for months in a low-nutrient enrichment that is dom-
inated by another pigment type (as judged by color of the
culture). Once supplied with higher nutrient concentrations
(i.e., when we switched to SN media), these PC-only strains
were able to quickly out compete PE-containing strains that
appeared to dominate originally. This highlights important
questions about the factors that either allow clades to coexist
or certain groups to dominate. In particular, little is known
about the ability of certain strains to survive unfavorable
conditions and how variation in this ability can impact clade
distributions in nature.

Comparison of Diversity from Clone Libraries
and Culture Isolations

Some isolated clade representatives did not appear in envi-
ronmental clone libraries and vice versa. Members of clades
II, III, VI, VII, VIII, CB5, 5.2MVI, 5.2MV2, 5.2MV3, and
5.3I were isolated into culture but did not show up in the
clone library sequences. The reverse occurred for clade IV
and subclades IA and IB, for which sequences were found
in the clone libraries, but not in the isolated and sequenced
strains. Ahlgren and Rocap [1] found a similar mismatch
of diversity recovered from simultaneous culture isolations
and construction of clone libraries for samples from the
Sargasso Sea. This is perhaps not surprising given the poten-
tial biases in each method. Isolation procedures are likely
to favor growth of certain clades over others, and we can
surmise that subclades IA and IB and clade IV cells do
not grow well or were outcompeted by other strains in our
enrichment conditions. The strength of possible culturing
biases is clearly demonstrated with the isolations of PC-only
Synechococcus strains. These were numerous in the cul-
ture collection, but almost absent in both the clone libraries
and flow cytometry record. For the clone libraries, there
may be primer biases that selectively favor the amplification
of certain clades. The overwhelming dominance of clade I
cells would also make rarer clades difficult to detect in the
clone libraries. Even with these biases, rarefaction analy-
sis suggests that for all but a few samples, further sampling
with either method would have yielded more diversity, as
most curves do not reach a plateau (Fig. 8). In combina-
tion, though, culture isolation and clone library techniques
have captured a more complete picture of total diversity than
either one alone (Fig. 7c).

It is noteworthy that the occurrence of certain clades dif-
fered among enrichments that were separated only by a few
weeks in time. For example, the samples for enrichments
15–17 came from similar nutrient and temperature condi-
tions, but each of these yielded a very different array of
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a b c

Fig. 8 Rarefaction analysis of ntcA sequences for clone library and
culture isolate sequences. In each panel, dotted lines are the average
number of OTUs observed for 1000 sampling iterations for each num-
ber of sequences sampled. a Rarefaction curves for each clone library
sample. b Rarefaction curves of culture isolate sequences for each

enrichment sample. Color indicates time of year and gray shaded areas
indicate 95 % confidence intervals. c Comparison of clone library (blue
circles) and culture isolate (red triangles) rarefaction curves (same data
as plotted in panels a and b) for sampling up to 30 sequences. OTU
designation was at 10 % dissimilarity level

clade representatives (Fig. S4). While there are many biases
in culturing, these differences between enrichments may
hint at fast changing dynamics either in the field or in the
enrichment culture (probably during the first few weeks).
This illustrates some of the challenges faced when attempt-
ing to isolate and culture novel strains of Synechococcus or
other organisms. We do not yet understand all the factors
that determine how an organism will grow in isolation under
laboratory conditions, and caution is needed in extending
findings to natural dynamics.

Future Considerations

Many questions remain not only concerning how environ-
mental (temperature, light, nutrients) and ecological (graz-
ers, viruses, heterotrophic bacteria) factors govern clade
distributions but also how changes in these factors over a
seasonal cycle affects the abundance of different clades.
We emphasize the importance of investigating the temporal
aspects of diversity patterns, especially in dynamic coastal
systems. On the New England Shelf, Synechococcus cell
concentration undergoes a dramatic (3 orders of magnitude)
seasonal cycle, and it is likely that some of the abundance
patterns are determined by which clades are favored under
different conditions. With isolates in culture from this loca-
tion, we are poised to begin exploration into some of the
differences between clade and subclade types. Ultimately,
high frequency monitoring of clade diversity, coupled with
physiological and ecological knowledge of representative
strains, will allow a greater insight into how diversity of
this genus is maintained and how that diversity is linked to
overall population dynamics.
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