432 research outputs found

    Product risk assessment: a Bayesian network approach

    Get PDF
    Product risk assessment is the overall process of determining whether a product, which could be anything from a type of washing machine to a type of teddy bear, is judged safe for consumers to use. There are several methods used for product risk assessment, including RAPEX, which is the primary method used by regulators in the UK and EU. However, despite its widespread use, we identify several limitations of RAPEX including a limited approach to handling uncertainty and the inability to incorporate causal explanations for using and interpreting test data. In contrast, Bayesian Networks (BNs) are a rigorous, normative method for modelling uncertainty and causality which are already used for risk assessment in domains such as medicine and finance, as well as critical systems generally. This article proposes a BN model that provides an improved systematic method for product risk assessment that resolves the identified limitations with RAPEX. We use our proposed method to demonstrate risk assessments for a teddy bear and a new uncertified kettle for which there is no testing data and the number of product instances is unknown. We show that, while we can replicate the results of the RAPEX method, the BN approach is more powerful and flexible

    A Bayesian Network Approach for Product Safety Risk Management

    Get PDF
    A new method for safety risk management and assessment using Bayesian networks is proposed to resolve limitations of existing methods and to ensure that products and systems available on the market are acceptably safe for use. The method is applicable to a wide range of products and systems, ranging from consumer goods through to medical devices, and even complex systems such as aircraft. While methods such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) have been used quite effectively in safety assessment for certain classes of critical systems, they have several limitations which are addressed by the proposed Bayesian network (BN) method. In particular, the BN approach enables us to combine multiple sources of knowledge and data to provide quantified, auditable risk estimates at all stages of a product’s life cycle, including especially when there are limited or no testing or operational safety data available. The BN approach also enables us to incorporate different perceptions of risk, including taking account of personal differences in the perceived benefits of the product under assessment. The proposed BN approach provides a means for safety regulators, manufacturers, risk professionals, and even individuals to better assess safety and risk. It is powerful and flexible, can complement traditional safety and risk assessment methods, and is applicable to a far greater range of products and systems. The method can also be used to validate the results of traditional safety and risk assessment methods when relevant data become available. It is demonstrated and validated using case studies from consumer product safety risk assessment and medical device risk management

    Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals

    Get PDF
    This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive the wavelength dependance of these spatial dispersion effects quite generally without relying on an expansion in powers of the chirality and without assuming that the pitch of the cholesteric PP is much shorter than the wavelength of the light λ\lambda, an approximation which has been made in previous studies of this problem. The theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR

    Electron doped Ca10(Pt3As8)(Fe2As2)5 and Ca10(Pt4As8)(Fe2As2)5 - High Tc superconductors with skutterudite intermediary layers

    Full text link
    It has been argued that the very high transition temperatures of the highest Tc cuprate superconductors are facilitated by enhanced CuO2 plane coupling through the (Bi,Tl,Hg)-O intermediary layers. Whether enhanced coupling through intermediary layers can also influence Tc in the iron arsenide superconductors has never been tested due the lack of appropriate systems for study. Here we report the crystal structures and properties of two iron arsenide superconductors, Ca10(Pt3As8)(Fe2As2)5 (the 10-3-8 phase) and Ca10(Pt4As8)(Fe2As2)5 (the 10-4-8 phase). Based on -Ca-(PtnAs8)-Ca-Fe2As2- layer stacking, the most important difference in the structures lies in the structural and electronic characters of the intermediary platinum arsenide layers. Electron doping through partial substitution of Pt for Fe in the Fe2As2 layers leads to Tc of 11 K in the 10-3-8 phase and 25 K in the 10-4-8 phase. Using the chemical concepts of Zintl ion electron counting and the stability of Pt in the 5d8 configuration we argue that the dramatic difference in Tc arises because the intermediary layer is semiconducting in the 10-3-8 phase but metallic in the 10-4-8 phase, leading to enhanced interlayer coupling in the 10-4-8 phase. The results suggest that metallic intermediary layers may offer a new road to higher Tc in iron arsenide superconductors

    Upper critical field measurements up to 60 T in arsenic-deficient LaO_(0.9)F_(0.1)FeAs_(1-delta): Pauli limiting behaviour at high fields vs improved superconductivity at low fields

    Full text link
    We report resistivity and upper critical field B_c2(T) data for As deficient LaO_(0.9)F_(0.1)FeAs_(1-delta) in a wide temperature and high field range up to 60 T. These disordered samples exhibit a slightly enhanced superconducting transition at T_c = 29 K and a significantly enlarged slope dB_(c2))/dT = -5.4 T/K near T_c which contrasts with a flattening of B_(c2)(T) starting near 23 K above 30 T. This flattening is interpreted as Pauli limiting behaviour (PLB) with B_(c2)(0) approx 63 T. We compare our results with B_(c2)(T)-data reported in the literature for clean and disordered samples. Whereas clean samples show no PLB for fields below 60 to 70 T, the hitherto unexplained flattening of B_(c2)(T) for applied fields H || ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences of our results are discussed in terms of disorder effects within the frame of conventional and unconventional superconductivity.Comment: 4 pages, 3 figures, submitted to RHMF09 (9th International Conference on the Research in High Magnetic Fields), Dresden, July 22-25, 200

    Upper critical fields and thermally-activated transport of Nd(O_0.7F_0.3)FeAs single crystal

    Full text link
    We present measurements of the resistivity and the upper critical field H_c2 of Nd(O_0.7F_0.3)FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H_c2 is comparable to ~100 T of high T_c cuprates. H_c2(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H_c2 shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T_c but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4-5 decades. The activation energy has very different field dependencies for H||ab and H\perp ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H_{c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H_c2(T),which may significantly reduce H_c2(0) as compared toH_c2(0)~200-300 T based on extrapolations of H_c2(T) near T_c down to low temperatures.Comment: 11 pages, 16 figure

    Evidence for Pauli-limiting behaviour at high fields and enhanced upper critical fields near T_c in several disordered FeAs based Superconductors

    Full text link
    We report resistivity and upper critical field B_c2(T) data for disordered (As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field range up to 60 T. These samples exhibit a slightly enhanced superconducting transition at T_c = 28.5 K and a significantly enlarged slope dB_c2/dT = -5.4 T/K near T_c which contrasts with a flattening of B_c2(T) starting near 23 K above 30 T. The latter evidences Pauli limiting behaviour (PLB) with B_c2(0) approximately 63 T. We compare our results with B_c2(T)-data from the literature for clean and disordered samples. Whereas clean samples show almost no PLB for fields below 60 to 70 T, the hitherto unexplained pronounced flattening of B_c2(T) for applied fields H II ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences are discussed in terms of disorder effects within the frames of (un)conventional superconductivity, respectively.Comment: 2 pages, 3 figures, submitted to M2S Tokyo 0

    Quiet Supersonic Flights 2018 (QSF18) Test: Galveston, Texas Risk Reduction for Future Community Testing with a Low-Boom Flight Demonstration Vehicle

    Get PDF
    The Quiet Supersonic Flights 2018 (QSF18) Program was designed to develop tools and methods for demonstration of overland supersonic flight with an acceptable sonic boom, and collect a large dataset of responses from a representative sample of the population. Phase 1 provided the basis for a low amplitude sonic boom testing in six different climate regions that will enable international regulatory agencies to draft a noise-based standard for certifying civilian supersonic overland flight. Phase 2 successfully executed a large scale test in Galveston, Texas, developed well documented data sets, calculated dose response relationships, yielded lessons, and identified future risk reduction activities
    • …
    corecore