19,580 research outputs found
Effects of horizontal vibration on hopper flows of granular materials
The current experiments investigate the discharge of glass spheres in a planar wedge-shaped hopper (45 degree sidewalls) that is vibrated hoizontally. When the hopper is discharged without vibration, the discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With horizontal vibration, the discharge rate increases with the velocity of vibration as compared with the discharge rate without vibration. For a certain range of acceleration parameters (20-30 Hz and accelerations greater than about 1 g), the discharge of the material occurs in an inverted-funnel pattern, with the material along the sides exiting first, followed by the material in the core; the free surface shows a peak at the center of the hopper with the free surface particles avalanching from the center toward the sides. During the deceleration phase of a vibration cycle, particles all along the trailing or low-pressure wall separate from the surface and fall under gravity for a short period before reconnecting the hopper. For lower frequencies (5 and 10 Hz), the free surface remains horizontal and the material appears to discharge uniformly from the hopper
Effects of Horizontal Vibration on Hopper Flows of Granular Material
This study experimentally examines the flow of glass spheres in a wedge-shaped hopper that is vibrated hoizontally. When the hopper is discharged without vibration, discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With vibration, the discharge of the material occurs in reverse, with the material along the sides exiting first, followed by the material in the central region. These patterns are observed with flow visualization and high-speed photography. The study also includes measurements of the discharge rate, which increases with the amplitude of the velocity of vibration
Multilayered folding with voids
In the deformation of layered materials such as geological strata, or stacks
of paper, mechanical properties compete with the geometry of layering. Smooth,
rounded corners lead to voids between the layers, while close packing of the
layers results in geometrically-induced curvature singularities. When voids are
penalized by external pressure, the system is forced to trade off these
competing effects, leading to sometimes striking periodic patterns.
In this paper we construct a simple model of geometrically nonlinear
multi-layered structures under axial loading and pressure confinement, with
non-interpenetration conditions separating the layers. Energy minimizers are
characterized as solutions of a set of fourth-order nonlinear differential
equations with contact-force Lagrange multipliers, or equivalently of a
fourth-order free-boundary problem. We numerically investigate the solutions of
this free boundary problem, and compare them with the periodic solutions
observed experimentally
Dynamical decoherence of the light induced interlayer coupling in YBaCuO
Optical excitation of apical oxygen vibrations in
YBaCuO has been shown to enhance its c-axis
superconducting-phase rigidity, as evidenced by a transient blue shift of the
equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient
c-axis plasma mode could also be induced above T by the same apical
oxygen excitation, suggesting light activated superfluid tunneling throughout
the pseudogap phase of YBaCuO. However, despite the
similarities between the above T transient plasma mode and the
equilibrium Josephson plasmon, alternative explanations involving high mobility
quasiparticle transport should be considered. Here, we report an extensive
study of the relaxation of the light-induced plasmon into the equilibrium
incoherent phase. These new experiments allow for a critical assessment of the
nature of this mode. We determine that the transient plasma relaxes through a
collapse of its coherence length rather than its carrier (or superfluid)
density. These observations are not easily reconciled with quasiparticle
interlayer transport, and rather support transient superfluid tunneling as the
origin of the light-induced interlayer coupling in
YBaCuO.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures
(main text
Measuring categorisation in pre-school children: new toolkit, new insights
Introduction: whilst recent years have witnessed considerable research into infant categorisation, its development during the pre-school period has garnered far less interest and innovation.
Objective: this paper documents the development of a valid and reliable new toolkit for measuring categorisation in children, designed to allow fine-grained differentiation through four short tasks.
Methods: the paper outlines how a pilot study with 55 children reduced confounding variables, ruled out several explanations for performance variations and enabled procedural refinements. It then documents a study conducted with 190 children aged 30-60 months.
Results: this more sophisticated testing mechanism challenges previously accepted developmental norms and suggests both sex and socio-economic status (and their interaction) influence categorisational abilities in pre-schoolers.
Conclusion: the results indicate that preschool children’s ability to categorise varies markedly, with implications for their capacity to access formal education
Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling
AIM: The aim of this study was to investigate feedback
control strategies for integration of electric motor assist and functional electrical stimulation (FES) for paraplegic cycling, with particular focus on development of a testbed for exercise testing in FES cycling, in which both cycling cadence and workrate are simultaneously well controlled and contemporary physiological measures of exercise performance derived. A second aim was
to investigate the possible benefits of the approach for mobile, recreational cycling.
METHODS: A recumbent tricycle with an auxiliary electric motor is used, which is adapted for paraplegic users, and instrumented for stimulation control. We propose a novel integrated control strategy which simultaneously provides feedback control of leg power output (via automatic adjustment of stimulation intensity) and cycling cadence (via electric motor control). Both loops are
designed using system identification and analytical (model-based) feedback design methods. Ventilatory and pulmonary gas exchange response profiles are derived using a portable system for real-time breath-by-breath acquisition.
RESULTS:We provide indicative results from one paraplegic subject in which a series of feedback-control tests illustrate accurate control of cycling cadence, leg power control, and external disturbance rejection. We also provide physiological response profiles from a submaximal exercise step test and a maximal incremental exercise test, as facilitated by the control strategy.
CONCLUSION: The integrated control strategy is effective in facilitating
exercise testing under conditions of well-controlled cadence
and power output. Our control approach significantly extends the
achievable workrate range and enhances exercise-test sensitivity
for FES cycling, thus allowing a more stringent characterization
of physiological response profiles and estimation of key parameters
of aerobic function.We further conclude that the control approach
can significantly improve the overall performance of mobile recreational
cycling
Explaining two circumnuclear star forming rings in NGC5248
The distribution of gas in the central kiloparsec of a galaxy has a
dynamically rapid evolution. Nonaxisymmetries in the gravitational potential of
the galactic disk, such as a large scale stellar bar or spiral, can lead to
significant radial motion of gaseous material from larger radii to the central
region. The large influx of gas and the subsequent star formation keep the
central region constantly changing. However, the ability of gas to reach the
nucleus proper to fuel an AGN phase is not guaranteed. Gas inflow can be halted
at a circumnuclear star forming ring several hundred parsec away. The nearby
galaxy NGC5248 is especially interesting in this sense since it is said to host
2 circumnuclear star forming rings at 100pc and 370pc from its quiescent
nucleus. Here we present new subarcsecond PdBI+30m CO(2-1) emission line
observations of the central region. For the first time the molecular gas
distribution at the smallest stellar ring is resolved into a gas ring,
consistent with the presence of a quiescent nucleus. However, the molecular gas
shows no ring structure at the larger ring. We combine analyses of the gaseous
and stellar content in the central kiloparsec of this galaxy to understand the
gas distribution and dynamics of this star forming central region. We discuss
the probability of two scenarios leading to the current observations, given our
full understanding of this system, and discuss whether there are really two
circumnuclear star forming rings in this galaxy.Comment: Accepted for publication in A&A, 14pages + long tabl
Quantifying non-star formation associated 8um dust emission in NGC 628
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find
that between 30-43% of its 8um dust emission is not related to recent star
formation. Contributions from dust heated by young stars are separated by
identifying HII regions in the Ha map and using these areas as a mask to
determine the 8um dust emission that must be due to heating by older stars.
Corrections are made for sub-detection-threshold HII regions, photons escaping
from HII regions and for young stars not directly associated to HII regions
(i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um
emission can be expected given dust and PAH absorption cross-sections, a
realistic star-formation history, and the observed optical extinction values. A
Fourier power spectrum analysis indicates that the 8um dust emission is more
diffuse than the Ha emission (and similar to observed HI), supporting our
analysis that much of the 8um-emitting dust is heated by older stars. The 8um
dust-to-Ha emission ratio declines with galactocentric radius both within and
outside of HII regions, probably due to a radial increase in disk transparency.
In the course of this work, we have also found that intrinsic diffuse Ha
fractions may be lower than previously thought in galaxies, if the differential
extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap
Structure of 10N in 9C+p resonance scattering
The structure of exotic nucleus 10N was studied using 9C+p resonance
scattering. Two L=0 resonances were found to be the lowest states in 10N. The
ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2)
MeV depending on the 2- or 1- spin-parity assignment, and the first excited
state is unbound by 2.8(2) MeV.Comment: 6 pages, 4 figures, 1 table, submitted to Phys. Lett.
- …