937 research outputs found

    Sedimentation, re-sedimentation and chronologies in archaeologically-important caves: problems and prospects

    Get PDF
    Excavations in the photic zones of caves have provided cornerstone archaeological sequences in many parts of the world. Before the appearance of modern dating techniques, cave deposits provided clear evidence for the antiquity, relative ages and co-occurrence of ancient human remains, material culture and fauna. Earlier generations of archaeologists had generally rather limited understanding of taphonomic and depositional processes, but the twentieth century saw considerable improvement in excavation and analytical techniques. The advent of modern dating and chronological methodologies offers very powerful tools for the analysis of cave fill deposits and this has resulted in the recognition of chronological incoherence in parts of some sites, with consequent re-evaluation of previous archaeological disputes. Obtaining multiple dates per context provides a means to assess the integrity and coherence of the archaeological and environmental records from cave fills. In the case of the Haua Fteah (Libya), this technique allowed the recognition of chronological coherence in low-energy depositional environments and limited recycling in high-energy contexts. We provide a conceptual model of the relationship between recycling, sedimentation rate and process energy. High-resolution investigation enables recognition of the complexity of the formation of cave sequences, thus an increasingly sophisticated understanding of human behaviour and environmental relationships in the past, and potentially gives a new life to old data

    Sedimentation, re-sedimentation and chronologies in archaeologically-important caves: problems and prospects

    Get PDF
    Excavations in the photic zones of caves have provided cornerstone archaeological sequences in many parts of the world. Before the appearance of modern dating techniques, cave deposits provided clear evidence for the antiquity, relative ages and co-occurrence of ancient human remains, material culture and fauna. Earlier generations of archaeologists had generally rather limited understanding of taphonomic and depositional processes, but the twentieth century saw considerable improvement in excavation and analytical techniques. The advent of modern dating and chronological methodologies offers very powerful tools for the analysis of cave fill deposits and this has resulted in the recognition of chronological incoherence in parts of some sites, with consequent re-evaluation of previous archaeological disputes. Obtaining multiple dates per context provides a means to assess the integrity and coherence of the archaeological and environmental records from cave fills. In the case of the Haua Fteah (Libya), this technique allowed the recognition of chronological coherence in low-energy depositional environments and limited recycling in high-energy contexts. We provide a conceptual model of the relationship between recycling, sedimentation rate and process energy. High-resolution investigation enables recognition of the complexity of the formation of cave sequences, thus an increasingly sophisticated understanding of human behaviour and environmental relationships in the past, and potentially gives a new life to old data

    The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan

    Get PDF
    The roots of pyrometallurgy are obscure. This paper explores one possible precursor, in the Faynan Orefield in southern Jordan. There, at approximately 7000 cal. BP, banks of a near-perennial meandering stream (today represented by complex overbank wetland and anthropogenic deposits) were contaminated repeatedly by copper emitted by human activities. Variations in the distribution of copper in this sequence are not readily explained in other ways, although the precise mechanism of contamination remains unclear. The degree of copper enhancement was up to an order of magnitude greater than that measured in Pleistocene fluvial and paludal sediments, in contemporary or slightly older Holocene stream and pond deposits, and in the adjacent modern wadi braidplain. Lead is less enhanced, more variable, and appears to have been less influenced by contemporaneous human activities at this location. Pyrometallurgy in this region may have appeared as a byproduct of the activity practised on the stream-bank in the Wadi Faynan ~7000 years ago

    Relationship Between Peer Assessment During Medical School, Dean’s Letter Rankings, and Ratings by Internship Directors

    Get PDF
    BACKGROUND: It is not known to what extent the dean’s letter (medical student performance evaluation [MSPE]) reflects peer-assessed work habits (WH) skills and/or interpersonal attributes (IA) of students. OBJECTIVE: To compare peer ratings of WH and IA of second- and third-year medical students with later MSPE rankings and ratings by internship program directors. DESIGN AND PARTICIPANTS: Participants were 281 medical students from the classes of 2004, 2005, and 2006 at a private medical school in the northeastern United States, who had participated in peer assessment exercises in the second and third years of medical school. For students from the class of 2004, we also compared peer assessment data against later evaluations obtained from internship program directors. RESULTS: Peer-assessed WH were predictive of later MSPE groups in both the second (F = 44.90, P < .001) and third years (F = 29.54, P < .001) of medical school. Interpersonal attributes were not related to MSPE rankings in either year. MSPE rankings for a majority of students were predictable from peer-assessed WH scores. Internship directors’ ratings were significantly related to second- and third-year peer-assessed WH scores (r = .32 [P = .15] and r = .43 [P = .004]), respectively, but not to peer-assessed IA. CONCLUSIONS: Peer assessment of WH, as early as the second year of medical school, can predict later MSPE rankings and internship performance. Although peer-assessed IA can be measured reliably, they are unrelated to either outcome

    Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode

    Get PDF
    All-solid-state batteries promise significant safety and energy density advantages over liquid-electrolyte batteries. The interface between the cathode and the solid electrolyte is an important contributor to charge transfer resistance. Strong bonding of solid oxide electrolytes and cathodes requires sintering at elevated temperatures. Knowledge of the temperature dependence of the composition and charge transfer properties of this interface is important for determining the ideal sintering conditions. To understand the interfacial decomposition processes and their onset temperatures, model systems of LiCoO2 (LCO) thin films deposited on cubic Al-doped Li7La3Zr2O12 (LLZO) pellets were studied as a function of temperature using interface-sensitive techniques. X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and energy-dispersive X-ray spectroscopy (EDS) data indicated significant cation interdiffusion and structural changes starting at temperatures as low as 300°C. La2Zr2O7 and Li2CO3 were identified as decomposition products after annealing at 500°C by synchrotron X-ray diffraction (XRD). X-ray absorption spectroscopy (XAS) results indicate the presence of also LaCoO3, in addition to La2Zr2O7 and Li2CO3. Based on electrochemical impedance spectroscopy, and depth profiling of the Li distribution upon potentiostatic hold experiments on symmetric LCO|LLZO|LCO cells, the interfaces exhibited significantly increased impedance, up to 8 times that of the as-deposited samples after annealing at 500°C. Our results indicate that lower-temperature processing conditions, shorter annealing time scales, and CO2-free environments are desirable for obtaining ceramic cathode-electrolyte interfaces that enable fast Li transfer and high capacity

    Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization?

    Get PDF
    The c-AMP-responsive element binding protein (CREB) and its phosphorylated product (P-CREB) are nuclear proteins expressed after stimulation of pain-producing areas of the spinal cord. There is evidence indicating that central sensitization within dorsal horn neurons is dependent on P-CREB transcriptional regulation. The objectives of the study were to investigate the expression of P-CREB in cells in rat trigeminal nucleus caudalis after noxious stimulation and to determine whether pre-treatment with specific anti-migraine agents modulate this expression. CREB and P-CREB labelling was investigated within the trigeminal caudalis by immunohistochemistry after capsaicin stimulation. Subsequently, the effect of i.v. pre-treatment with either sumatriptan (n = 5), or naratriptan (n = 7) on P-CREB expression was studied. Five animals pre-treated with i.v. normal saline were served as controls. CREB and P-CREB labelling was robust in all animal groups within Sp5C. Both naratriptan and sumatriptan decreased P-CREB expression (p = 0.0003 and 0.0013) within the Sp5C. Triptans attenuate activation of CREB within the central parts of the trigeminal system, thereby leading to potential inhibition of central sensitization. P-CREB may serve as a new marker for post-synaptic neuronal activation within Sp5C in animal models relevant to migraine

    The radio spectral energy distribution and star-formation rate calibration in galaxies

    Get PDF
    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index (S-nu similar to nu(-alpha nt)) and the thermal fraction (f(th)) with mean values of alpha(nt)= 0.97 +/- 0.16(0.79 +/- 0.15 for the total spectral index) and f(th) = (10 +/- 9)% at 1.4 GHz. The MRC luminosity changes over similar to 3 orders of magnitude in the sample, 4.3 x 10(2) L-circle dot < MRC < 3.9 x 10(5) L-circle dot. The thermal emission is responsible for similar to 23% of the MRC on average. We also compare the extinction-corrected diagnostics of the. star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in starforming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/starforming galaxies are detected
    corecore