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Sedimentation, re-sedimentation and chronologies in archaeologically-20 

important caves: problems and prospects   21 

 22 

Abstract 23 

Excavations in the photic zones of caves have provided cornerstone archaeological sequences in 24 
many parts of the world.  Before the appearance of modern dating techniques, cave deposits 25 
provided clear evidence for the antiquity, relative ages and co-occurrence of ancient human 26 
remains, material culture and fauna.  Earlier generations of archaeologists had generally rather 27 
limited understanding of taphonomic and depositional processes, but the twentieth century saw 28 
considerable improvement in excavation and analytical techniques.  The advent of modern dating 29 
and chronological methodologies offers very powerful tools for the analysis of cave fill deposits and 30 
this has resulted in the recognition of chronological incoherence in parts of some sites, with 31 
consequent re-evaluation of previous archaeological disputes.  Obtaining multiple dates per context 32 
provides a means to assess the integrity and coherence of the archaeological and environmental 33 
records from cave fills.  In the case of the Haua Fteah (Libya), this technique allowed the recognition 34 
of chronological coherence in low-energy depositional environments and limited recycling in high-35 
energy contexts.  We provide a conceptual model of the relationship between recycling, 36 
sedimentation rate and process energy.  High-resolution investigation enables recognition of the 37 
complexity of the formation of cave sequences, thus an increasingly sophisticated understanding of 38 
human behaviour and environmental relationships in the past, and potentially gives a new life to old 39 
data.   40 

 41 
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 44 

Introduction 45 

This paper deals with issues arising from the mobility and re-deposition of predominantly-clastic  46 
sediments in the photic zones (areas reached by at least diffuse daylight), of archaeologically-47 
important caves, particularly from the perspective of chronology and chronological integrity.  It 48 
therefore complements the paper by Canti and Huisman (this volume) which deals with site 49 
formation and diagenesis in anthropogenic and biological sediments in cave fills.  The majority of 50 
archaeologically-important caves are karst (dissolution) features in limestone or dolomite and the 51 
following discussion mostly addresses caves in these lithologies, although caves also form in gypsum, 52 
rock salt, sandstone, quartzite and granite, among others.  Further, virtually all rock types - other 53 
than the very weakest mechanically - can give rise to rock shelters, and these share many properties 54 
and issues with caves. 55 

In the early days of Archaeology, caves provided some of the most important evidence for human 56 
antiquity, such as the demonstration by Pengelly et al. (1873) of the association of humanly-shaped 57 
artefacts with the bones of extinct animals.  Caves were the source of the first Neanderthal skeletal 58 
material (e.g. Schaffhausen 1861; Fraipont and Lohest 1887), indicating for the first time that other 59 
human species had existed in the past, thus being seen to validate early evolutionary theory (e.g. 60 
Huxley 1863).  The recognition of changing material culture through time, although partly realised 61 
from open-air sites, was also further demonstrated and refined from cave excavations.  Some of the 62 
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most important early expositions of regional Palaeolithic and later sequences came from caves in 63 
France (Lartet and Christie 1875; de Mortillet 1886; Laville et al. 1980) and the UK (Pengelly et al. 64 
1873; Dawkins 1874).  Examples among many influential later expositions of key cave sequences are 65 
those for La Ferassie, France (Peyrony 1934; Delporte 1984), Taforalt, Morocco (Roche 1953), 66 
Shanidar Cave, Iraq (Solecki 1955, 1963), the Haua Fteah, Libya (McBurney 1967), Niah Cave, Borneo 67 
(Harrisson 1964, 1970) and  Franchthi  Cave, Greece (Jacobsen and Farrand 1987).    68 

The three-dimensional complexities of past processes, sedimentation and chronology reflected by 69 
cave fills were not suspected by many early researchers - and indeed many had little idea of, or 70 
interest in, the processes which gave rise to the sediment accumulations that they excavated.  71 
While, for instance, the excavations at Creswell Crags by Dawkins (1874) were truly ground-breaking 72 
at the time, their execution reflected the contemporary limitations of knowledge, with skilled coal 73 
miners employed  to cut and work back a vertical face in the cave sediments, while the excavator sat 74 
in a chair at the cave mouth and selected items visible in the barrows as sediments were cast from 75 
the cave, with minimal attention to the details revealed by the shifting exposure and the provenance 76 
of the ‘finds’. Not all early work was this crude: Pengelly et al. (1873) used what they termed ‘prisms’ 77 
(arbitrary excavation units) to demonstrate the close proximity of lithics and bones of extinct 78 
animals in the Brixham Cave, Devon (MacFarlane and Lundberg 2005). Again, no detailed attention 79 
was paid to stratification, other than to demonstrate that all finds were stratified beneath a 80 
flowstone floor.  This is hardly surprisingly given the lack of adequate and safe lighting and the 81 
extremely difficult conditions under which the excavators worked.  82 

Later researchers such as Leslie Armstrong, who dug at Creswell Crags from the early 1920s, typically 83 
controlled their excavation by measured units.   Armstrong controlled his excavation in Pinhole Cave 84 
by 1 foot ‘boxes’ with distances measured in from a datum at the cave mouth and down from a 85 
prominent flowstone floor which capped the deposits, enabling recognition of distinct cultural and 86 
faunal horizons in the cave fill (Jenkinson 1984; Hunt 1989; Jacobi et al. 1998).  87 

The advent of radiometric dating methods has completely changed approaches to the chronology of 88 
cave fills and their archaeology.  The first radiocarbon dates required the collection of several 89 
hundred grams of charcoal and were extremely expensive, but they revolutionised understanding of 90 
the antiquity of modern humans in many parts of the world (Wood, this volume). Thus, for example, 91 
the dating of charcoal associated with the ‘Deep Skull’ of Niah to ~42,000 (radiocarbon) years ago 92 
(Harrisson 1959) made this for many years the oldest human remains known anywhere on the 93 
planet (Barker et al. 2007a).   94 

Lack of attention to sediments, stratification and stratigraphy is evident in some publications up to 95 
the middle of the last century, and even as late as McBurney (1967) and Harrisson (1964, 1970). 96 
Thus, McBurney (1967) recognised natural layering in his trench sides in the Haua Fteah (Libya) but 97 
his arbitrary excavation units cut across this.  Similarly, at Niah, Harrisson (1964, 1970) rejected the 98 
complex stratigraphy visible in the baulks of his excavations. In both cases, linear extrapolation of a 99 
handful of dates resulted in very simple vertical-accretion models which did not recognise the 100 
complexity and discontinuity of sedimentation in these caves (Hunt et al. 2010; Gilbertson et al. 101 
2005, 2013).  Their chronological systems relied on observations of a ‘continuous drizzle’ of material 102 
falling from cave roofs and this was extrapolated as a continuing process operating at broadly steady 103 
rates for millennia. This type of uniformitarian approach and the assumptions behind it were not 104 
uncommon in analyses of cave sedimentation at this time (Anderson 1997).  Work of significantly 105 
higher quality was done, however, by some mid-Century archaeologists and their geoarchaeologist 106 
colleagues (e.g. Movius 1963, 1975, 1977; Farrand 1975).   107 

More recently, excavation by sedimentary context has become widespread, although by no means 108 
universal.   This important innovation enabled sampling at the level of the depositional event in 109 
geomorphologically-active caves, enabling the sophisticated analysis of archaeological site formation 110 
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and thus a fine-resolution dissection of human behaviour (for instance Movius 1977; Butzer 1984, 111 
1986; Farrand 2001).   112 

In recent years, as the general quality of excavation, stratigraphic work and recording has risen, the 113 
capabilities and resolution of dating techniques have also improved.  The average number of dates 114 
per project has sharply increased because dating laboratories have increased capacities and 115 
relatively reduced costs for dates.  Innovations including the now almost-universal Accelerator Mass 116 
Spectrometry, the ABOX stepped-combustion technique for charcoal (Bird et al. 1999), the 117 
ultrafiltration technique for bone (Higham et al. 2006) and dating the bone-specific amino acid 118 
hydroxyproline  (Marom et al. 2013) have decreased sample sizes, considerably increased the 119 
accuracy of radiocarbon dating and the range of reliably datable materials.  The INTCAL project has 120 
enabled radiocarbon dates to be calibrated to calendar years back to 50,000 years ago (Reimer et al. 121 
2013; Hogg et al. 2013; Wood, this volume).  122 

Many other dating methodologies have also been refined, for instance the single grain technique 123 
(Olley et al. 1999; Murray and Wintle 2000) has dramatically improved the accuracy of optically-124 
stimulated luminescence.  Careful application of individual dosimetry for flints, together with 125 
investigation of their localised mineralogical context has improved the reliability and precision of the 126 
Thermoluminescence technique, (Mercier et al. 2007), while application of a variation on the SAR 127 
protocol has enabled use of smaller and older samples, fewer dose points and less machine time for 128 
dates (Richter and Krbetschek (2006). The use of laser ablation has enabled microsampling and 129 
refined dating of bone, teeth and flowstone using the Uranium-series technique (e.g. Pike et al. 130 
2005; Grün et al. 2005), while Diffusion-Adsorption Modelling (Millard and Hedges 1996; Pike et al. 131 
2002) has enabled the post-depositional uptake of uranium in bone to be allowed for (Grün et al. 132 
2014).  The U-Pb method has extended the range of Uranium-series dating well beyone the first 133 
hominins (Pickering and Hellstrom this volume). Electron Spin Resonance (Grün 1989; Schwartz and 134 
Grün 1992) has provided dates beyond the range of the Uranium/Thorium technique and is often 135 
used in conjunction with Uranium-series dating (e.g. Grün et al. 2005), Amino-acid racemisation, 136 
which has had a chequered history, is now providing reliable relative dates on bird eggshell, 137 
mammalian tooth dentine and mollusc shell (e.g. Clarke et al. 2007; Penkman et al. 2008; Torres et 138 
al. 2014).  139 

Developments of modelling and statistical techniques have also resulted in advances in dating 140 
resolution and chronology construction.  The outstanding example is the widely-used Oxcal Bayesian 141 
program (Ramsey 1995) which enables modelling of dates and construction of chronologies, but 142 
alternative Bayesian and non-Bayesian modelling approaches are also  available (e.g. Blaauw 2010; 143 
Blaauw and Christen 2011; Shao et al. 2014). 144 

 145 

Chronological patterns in cave fills – indications of complex taphonomies 146 

It is becoming increasingly apparent that the chronological pattern in some archaeologically-147 
important caves is not straightforward (e.g. Jacobi et al. 1998; Barker et al. 2007a; David et al. 2007; 148 
Mallol et al. 2009; Kourampas et al. 2009; Higham et al. 2010; Bar-Yosef and Bordes 2010; Bordes 149 
and Teyssandier 2012; Russell and Armitage 2012; Hunt and Barker 2014; Yravedra and Gómez-150 
Castanedo 2014).  Similar conclusions may be drawn from some high-resolution analyses and 151 
refitting studies of archaeological artefacts (e.g. Jacobi et al. 1998; Bordes 2003; Bernatchez et al. 152 
2010; Staurset and Coulson 2014) and from detailed sediment and micromorphological analysis (e.g. 153 
Bar-Yosef et al. 1996; Albert et al. 1999; Karkanas et al. 2000; Goldberg 2000; Weiner et al. 2002; 154 
Karkanas and Goldberg 2010;  Berna et al. 2012; Inglis 2012).   155 
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Recognition of complex chronological patterns may have major implications for archaeological 156 
understanding.  For instance, the recognition of mixing of younger and older materials in the 157 
Chatelperronian layers at Grotte de Renne by Higham et al. (2010) removes the security of the 158 
association of Neanderthal fossils from artefactual evidence for behavioural complexity that had 159 
been claimed previously at this site.  At the Abri Pataud, high-precision dating provides compelling 160 
evidence for the shortness of the occupation phases (Higham et al. 2011).  Dating can also explore 161 
evidence of contemporaneity.  Thus, the Deep Skull of Niah was dated to ~35 ka BP but dates on 162 
adjoining contexts were dated to ~42 ka BP.  The dating complements geochemical, mineralogical 163 
and palynological evidence that this important fossil is an early burial (Hunt and Barker 2014).    164 

Fundamentally, any assessment of the archaeology of a cave relies on the detailed understanding of 165 
the chronology of sedimentation (and re-sedimentation).  The next section outlines new evidence 166 
for chronological incoherence caused by erosion and re-deposition at the Haua Fteah.  This type of 167 
chronological incoherence is widely seen as problematical, but it is, in fact, highly informative in 168 
terms of site formation processes and taphonomy. 169 

 170 

New high-resolution work at the Haua Fteah  171 

The Haua Fteah (NE Libya), originally excavated by McBurney (1967) has been the subject of recent 172 
reinvestigation using carefully-controlled single-context excavation augmented by a large-scale 173 
scientific program (Barker et al. 2007b, 2008, 2009, 2010, 2012; Simpson and Hunt 2009; Hunt et al. 174 
2010, 2011; Inglis 2012; Russell and Armitage 2012; Rabett et al. 2013; Douka et al. 2014; Hill 2014; 175 
Simpson 2014).  Re-analysis of the sedimentary sequence shows the prevalence of wash and small-176 
scale mudflow in the accumulation of the Haua sequence (Hunt et al. 2010, Inglis 2012).  177 

As part of the work on the cave, previously-unpublished high-resolution dating of the Holocene and 178 
Late Pleistocene sequence was carried out by Evan Hill.  Exploratory dates on charred seeds showed 179 
a considerable spread suggestive of recycling (Hunt et al. 2010; J. Morales pers. comm 2011). Land 180 
snails were therefore selected for this exercise because they were judged to be significantly less 181 
durable and thus less likely to survive recycling than charred plant macrofossils.  Multiple samples, 182 
each consisting of a single land snail (Helix melanostoma Drap.) were AMS radiocarbon dated from 183 
each sedimentary context.  The samples were calibrated using Calib 7.1 and dates were adjusted for 184 
metabolic fractionation using a method based on assessment of fractionation in modern specimens. 185 
Details are given in Hill (2014).   186 

An OxCal plot (Fig. 1) shows that most contexts studied show a considerable range of dates.  Some 187 
layers, most notably contexts 11001-11011, contained spreads of dates of as much as 6000 years. 188 
Other contexts contained very tight clusters of dates.  There is a distinct tendency for those contexts 189 
which accumulated through high-energy processes such as debris-flows – the origin for contexts 190 
11001-11010 – to contain comparatively large spreads of dates.  Those contexts which accumulated 191 
in quieter conditions, such as the silts of context 11018, in contrast, contain very tight clusters of 192 
dates.  193 

 194 

Fig. 1. Oxcal plot of radiocarbon dates on Helix melanostoma showing recycling and redeposition in 195 
the upper part of Trench M in the Haua Fteah (data from Hill 2014). 196 

 197 

Where there is a spread of dates, the youngest date in each context most probably provides a point 198 
in time shortly before the context accumulated in its present location.  Older specimens in the 199 



6 
 

context likely accumulated on the cave floor or were present in previously-deposited sediments and 200 
were then incorporated in their present context by erosion and deposition by high-energy processes. 201 

This data thus most probably indicates episodes of erosion and relocation of stored sediment in the 202 
Haua Fteah.  Erosion went no deeper than sediments accumulated over the 6000 years prior to the 203 
terminal deposition event for a context.  Alternatively there were stillstands of up to 6000 years 204 
between depositional events, where land snails and other material accumulated as a palimpsest on 205 
the cave floor, as suggested by Farrand (2001).  In either case, it is likely that recycling of sediments 206 
and molluscs was accompanied by localised recycling of other materials including artefacts, faunal 207 
and floral remains.   208 

As an example of other material involved in recycling, we provide an excerpt of the previously-209 
unpublished palynological work by David Simpson (Fig. 2).  This covers approximately the same 210 
stratigraphic interval as shown in Fig. 1.  Low-impact preparation methods were used to minimise 211 
damage to poorly-preserved palynomorphs (details in Simpson 2014). Sampling in this work followed 212 
sedimentary contexts but used a 5 cm sample interval in contexts thicker than this distance.  213 

 214 

Fig. 2. Summary pollen diagram of the upper part of the Middle Trench in the Haua Fteah.  The 215 
diagram covers approximately the same stratigraphic interval as that in Fig. 1. Data from Simpson 216 
2014). 217 

 218 

The pollen assemblages from this sequence are dominated either by Pinus or Asteraceae or a 219 
combination of these taxa.  Also present are pollen of grasses, a wide variety of herbs, some maquis 220 
species and some desertic taxa (Fig. 2). These assemblages are highly unusual and unlike soil pollen 221 
and pollen-trap assemblages in the region around the Haua (Simpson 2014), so present difficulties 222 
for interpretation.  Pinus is a prolific generator of wind-dispersed pollen. Stunted (usually less than 2 223 
m high) Pinus halepensis is today very sparse in dry coastal steppe between el Atroun and Derna, to 224 
the east of the Haua Fteah, so it is conceivable that high percentages of Pinus, with Poaceae and 225 
other herbs, might be consistent with some sort of arid pine-scrub steppe, if the pine-dominated 226 
assemblages are taken at face value.   Asteraceae, on the other hand, are often relatively 227 
concentrated in cave sediments because of the activities of ground-nesting bees (Bottema 1975), so 228 
it is by no means clear that the peaks of Asteraceae reflect anything more than periods where 229 
insects colonised the cave floor.  Pinus and Asteraceae are, however, extremely resistant to 230 
degradation in soils compared with most pollen types (e.g. Havinga 1984). It is therefore argued that 231 
elements resistant to corrosion and bacterial degradation such as Pinus and Asteraceae would tend 232 
to survive burial, exhumation and recycling during erosion episodes better than less resistant taxa.  233 
These recycled grains would then have become re-incorporated into the sequence together with 234 
pollen relating to the environment at the time of final deposition, thus leading to the extremely high 235 
percentages for Pinus and Asteraceae (Fig. 2).  Fluorescence microscopy (Hunt et al. 2007) was used 236 
to attempt a test of this hypothesis, but pollen from assemblages from the Haua did not fluoresce in 237 
visible wavelengths, probably because of its general degradation in the cave sediments. Issues 238 
relating to the archaeopalynology of caves are further explored in Edwards et al. (this volume). 239 

 240 

Processes of cave-mouth sediment deposition and re-deposition and their implications for 241 
chronologies 242 

All caves are unstable and complex environments, not least because in geological terms they are 243 
ephemeral features that go through a lifecycle of inception, formation, continued modification, 244 
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unroofing and finally complete erosional removal.  Sediment generation, transport and deposition 245 
are mediated by the cave morphology, parent rock lithology, bedding and joint patterns, by climate, 246 
and by the activities of, and materials produced by plants, animals and people.  The predominant 247 
sediment sources, transport and depositional media in cave photic zones are: 248 

1. From the cave walls and roof, from which material may be detached by dissolution, granular 249 
disintegration, running water, action of ice and/or mineral salts, rockfall and stoping  (detachment of 250 
rock or indurated sediment slabs from the cave roof)   251 

2. From external sources, by wind, rivers, the sea, glacial ice and/or mass-movement 252 

3. From solutes in groundwaters and meteoric waters through chemically and biochemically-253 
mediated deposition  254 

4. From the actions of animals, plants and humans in introducing and sometimes processing 255 
inorganic and organic materials including lithics, nesting materials, bedding, food items, droppings, 256 
scats, dung, firewood etc. and in introducing sediments on their feet. 257 

The combined actions of these media and processes result in a considerable variety of sediments, 258 
with deposition of particular facies resulting from the actions of particular groups of processes 259 
operating in spatially-restricted areas (e.g. Goldberg and Sherwood 2006; Hunt et al. 2010; Canti and 260 
Huisman this volume).    261 

Cave sediments are inherently unstable and often prone to post-depositional movement and erosion 262 
including by running water, the sea, mass movement, slumping, excavation by animals and people, 263 
partial dissolution and subsurface erosion by running water, cavern collapse and, in tectonically 264 
active zones, by faulting (Glover 1979; Gilbertson 1989; 1996; Bar-Yosef et al. 1996; Goldberg 2000; 265 
Gilbertson et al. 2005, 2013; Dykes 2007; Soficaru et al. 2007; Burney et al. 2008; Yravedra and 266 
Gómez-Castanedo 2014). Erosive processes often truncate sequences.  The solubility of ash, 267 
carbonate and phosphatic minerals and prevalence of mineral-rich groundwater in karst landscapes 268 
is of considerable importance for our understanding of cave sediment stratigraphies (Canti and 269 
Huismann, this volume).  Minerals may dissolve and reprecipitate as a result of changes in carbon 270 
dioxide partial pressure, dilution in pore and surface waters, concentration by evaporation and as a 271 
response to acidity and redox gradients caused by the presence of decaying organic matter 272 
(Karkanas et al. 2000, Goldberg 2000; Weiner et al. 2002; Shahack-Gross et al. 2004; Stephens et al. 273 
2005; Canti and Huisman, this volume).  Mineral dissolution and organic decay may cause major 274 
changes to sediment volume (Glover 1979; Karkanas et al. 2000; Goldberg 2000) and consequent 275 
slumping.   A further key issue associated with the circulation of chemically-active fluids within cave 276 
sediments is the often-deleterious impact of these fluids on the preservation of organic remains, 277 
through dissolution, disruption by crystal growth and so forth (e.g. Shahack-Gross et al. 2004; 278 
Stephens et al. 2005; Canti and Huisman this volume). 279 

Conversely, precipitation of minerals may armour surfaces against erosion and provide complete or 280 
patchy stability to what otherwise would be structurally-weak sediments.  Dissolution or erosional 281 
removal of unconsolidated sediments may leave ‘bridges’ of indurated material behind: later infill of 282 
the voids under these ‘bridges’ may lead to stratigraphic inversions (Coles 1989; Rowe et al. 1989).   283 

Modern geoarchaeological techniques provide ways to identify evidence of past instability and 284 
sediment movement, solution and reprecipitation (Canti and Huisman, this volume).  Various 285 
taphonomic indicators may also provide indications: these include  286 

 ecologically-incoherent faunas and floras,  287 

 the presence only of chemically-resistant body parts such as teeth,  288 
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 the presence of indicators of transport such as abrasion, rounding and disarticulation of 289 
elements,  290 

 winnowed assemblages, where, for instance there are concentrations of dense, large 291 
elements at the bottom of layers laid down by high-energy processes, or concentrations of 292 
light, easily-transported elements, typically in fine-grained deposits resulting from ponding.   293 

Close-interval dating provides another tool in the cave geoarchaeologist’s toolkit, since it will 294 
provide evidence of dating reversals and of chronological incoherence, as discussed above (Fig. 1).  295 
In this case the archaeologist must consider the degree to which the archaeology from layers with 296 
evidence of chronological incoherence may be in-situ, and the chronological resolution possible, 297 
when assessing evidence for human behaviour.   298 

There is a general relationship between the energy of processes of deposition, the sedimentation 299 
rate and the degree of chronological resolution (caricatured in Fig. 3).  At very low sedimentation 300 
rates, poor chronological resolution is likely.  In many sites, most of the time encompassed by 301 
depositional sequences is not recorded in the sedimentary record except as hiatuses between layers.  302 
For instance Hunt et al. (2010) recognised no more than 22 depositional episodes, most lasting for 303 
not more than a few minutes, during the Holocene in the Haua Fteah.  This leads to the possibility 304 
that several phases of human activity may be condensed into a palimpsest (Farrand 2001).  With low 305 
sedimentation rates and high process energy, particularly with water flows, there is a good chance 306 
that lighter artefacts will be removed (winnowed) from the deposition site, leaving only a lag of large 307 
artefacts and the heavier skeletal elements.  As sedimentation rate rises, if process energy remains 308 
low, then chronologically-defined horizons will become more widely separated.  With increasing 309 
process energy, however, there is an increasing probability that erosion of previously – deposited 310 
sediment will occur, and that the resulting contexts will contain recycled as well as in-situ material. 311 

 312 

Fig. 3.  Conceptual model of the relationship between sedimentation rate, process energy and the 313 
probability of chronologically-resolved in-situ archaeology.   314 

 315 

Conclusion 316 

It is quite probable that the days of heroic-scale cave excavations are limited, simply because in the 317 
current climate of financial austerity the level of resources necessary for a major cave excavation will 318 
be only very infrequently available.  Further, most of the early cave excavations took place with 319 
almost total disregard for health and safety, something that we could not contemplate today.     320 

Cave sediments are often staggeringly rich in a very wide variety of material and are likely to be 321 
complex chronologically and in three dimensions.  The quantities of material preserved in cave fills 322 
can be enormous: it is estimated that over half a million finds were generated during McBurney’s 323 
(1967) excavation of the Haua Fteah (G. Barker, pers. comm. to COH, 2006).  It is essential that new 324 
excavations are embarked upon with the expectation of recovering this range and abundance of 325 
material and to take account of the sheer richness and unpredictability of the cave record, with 326 
detailed plotting in three dimensions of sedimentary facies, fossils and artefacts and high-resolution 327 
dating and geoarchaeological sampling.  It follows that archaeological materials should be analysed 328 
in conjunction with the chronological, environmental and taphonomic datasets from excavations, 329 
rather than becoming detached from them. This approach will enable us to focus our attention on 330 
the human behaviours in the context of environmental change and the physical, chemical and biotic 331 
processes which together led to the formation of the cave archaeological record.    332 
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We suggest that reappraisal of many previously-excavated cave fills and the assessment of new 333 
excavations using the sophisticated dating and modelling methods now available will result in the 334 
increasing recognition of chronological complexity.   Quantifying this complexity in any depositional 335 
unit will become important in assessing the degree of interpretation which may be applied to the 336 
archaeology from that context.   337 

At present, innovation in dating and chronology-building techniques applicable to cave sediment 338 
sequences appears to be in a healthy state.    The new methodologies mentioned in this short review 339 
offer enormous possibilities for archaeological research, particularly when applied in conjunction 340 
with the geoarchaeological methodologies described by Canti and Huisman (this volume) and the 341 
multitude of other archaeological science techniques recorded in the pages of this journal.    342 

       343 
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List of Figures 634 

Fig. 1: Oxcal plot of radiocarbon dates on Helix melanostoma showing recycling and redeposition in 635 
the upper part of Trench M in the Haua Fteah. 636 
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Fig. 2. Summary pollen diagram of the upper part of the Middle Trench in the Haua Fteah.  The 639 
diagram covers approximately the same stratigraphic interval as that in Fig. 2.  640 
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Fig. 3.  Conceptual sketch of the relationship between sedimentation rate, process energy and the 657 
probability of chronologically-resolved in-situ archaeology.   658 
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