345 research outputs found

    Individual differences and brain structure: correlates with magnetoencephalography

    Get PDF
    The work presented in this thesis aims to increase clinical capacity for magnetoencephalography (MEG) by developing an understanding of how, in healthy participants, individual differences in brain structure, personality, and demographics influence measurements of neural oscillatory responses and functional connectivity. To this end, a large cohort of normative data was acquired using MEG with additional data acquisition using high-field MRI and supplementary individual difference data collected via a psychometric battery and screening questionnaire. MEG data were analysed to elucidate both primary sensory responses to stimulation and functional connectivity within task and task-free acquisitions. Chapters two and three introduce the physiological origins of the MEG signal and the instrumentation required to record it. Chapter four describes data acquisition and preprocessing, from the methods used in the recruitment of participants to the scanning parameters employed for our MEG and MRI acquisitions. Chapters five to seven present three empirical studies. The first investigates the relationship between MEG derived measurements of functional connectivity and cortical myeloarchitecture. We demonstrate that covariation of cortical myelin is significantly predicted by MEG-derived measurements of functional connectivity both within individual frequency bands and by their linear and non-linear combination. Chapter six presents an exploratory analysis into the impact of aging and sex-differences on MEG derived measurements of sensorimotor responses and whole-brain functional connectivity. We find trends indicating increased oscillatory responses with age. Further, we find female volunteers to exhibit greater induced responses than males. Analysis of whole-brain functional connectivity revealed a near-global increase in connectivity in female participants as compared to males. The final empirical chapter assesses the shared neuronal representations between patients diagnosed with schizophrenia and healthy individuals scoring highly on a personality questionnaire measuring schizotypy. We found highly schizotypal individuals to exhibit attenuated sensorimotor responses akin to those previously observed in schizophrenia. Patients displayed reduced functional connectivity within an occipital network, identified in task and task free data. We found this aberrant network connectivity to also be present in healthy subjects scoring highly on a questionnaire assessing schizotypy. The thesis, in sum, presents work demonstrating the significant modulatory effects of individual differences ranging from sex differences to schizotypy. This work highlights the need for consideration of participant demographics and individual differences in both clinical and basic science studies. Further, the thesis presents a newly identified relationship between MEG-derived measurements of functional connectivity and cortical myeloarchitecture. Future work assessing the role of other sources of individual difference in modulating MEG measurements is required. Moreover, the framework for assessing the relationship between functional connectivity and cortical myeloarchitecture is well suited to application in clinical populations where this relationship is hypothesised to break down

    Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0

    Full text link
    In this paper, instead of invoking Dark Energy, we try and fit various cosmological observations with a large Gpc scale under-dense region (Void) which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances becomes a homogeneous FLRW metric. We improve on previous analyses by allowing for nonzero overall curvature, accurately computing the distance to the last-scattering surface and the observed scale of the Baryon Acoustic peaks, and investigating important effects that could arise from having nontrivial Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE), Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a nonzero overall curvature drastically improves the goodness of fit of the Void model, bringing it very close to that of a homogeneous universe containing Dark Energy, while by varying the profile one can increase the value of the local Hubble parameter which has been a challenge for these models. We also try to gauge how well our model can fit the large-scale-structure data, but a comprehensive analysis will require the knowledge of perturbations on LTB metrics. The model is consistent with the CMB dipole if the observer is about 15 Mpc off the centre of the Void. Remarkably, such an off-center position may be able to account for the recent anomalous measurements of a large bulk flow from kSZ data. Finally we provide several analytical approximations in different regimes for the LTB metric, and a numerical module for CosmoMC, thus allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in JCAP. References added, numerical values in tables changed due to minor bug, conclusions unaltered. Numerical module available at http://web.physik.rwth-aachen.de/download/valkenburg

    New measurements of low-energy resonances in the Ne 22 (p,Îł) Na 23 reaction

    Get PDF
    The Ne22(p,Îł)Na23 reaction is one of the most uncertain reactions in the NeNa cycle and plays a crucial role in the creation of Na23, the only stable Na isotope. Uncertainties in the low-energy rates of this and other reactions in the NeNa cycle lead to ambiguities in the nucleosynthesis predicted from models of thermally pulsing asymptotic giant branch (AGB) stars. This in turn complicates the interpretation of anomalous Na-O trends in globular cluster evolutionary scenarios. Previous studies of the Ne22(p,Îł)Na23, Ne22(He3,d)Na23, and C12(C12,p)Na23 reactions disagree on the strengths, spins, and parities of low-energy resonances in Na23 and the direct-capture Ne22(p,Îł)Na23 reaction rate contains large uncertainties as well. In this work we present new measurements of resonances at Erc.m.=417, 178, and 151 keV and of the direct-capture process in the Ne22(p,Îł)Na23 reaction. The resulting total Ne22(p,Îł)Na23 rate is approximately a factor of 20 higher than the rate listed in a recent compilation at temperatures relevant to hot-bottom burning in AGB stars. Although our rate is close to that derived from a recent Ne22(p,Îł)Na23 measurement by Cavanna et al. in 2015, we find that this large rate increase results in only a modest 18% increase in the Na23 abundance predicted from a 5 M thermally pulsing AGB star model from Ventura and D'Antona (2005). The estimated astrophysical impact of this rate increase is in marked contrast to the factor of ∌3 increase in Na23 abundance predicted by Cavanna et al. and is attributed to the interplay between the Na23(p,α)Ne20 and Ne20(p,Îł)Na21 reactions, both of which remain fairly uncertain at the relevant temperature range

    Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system

    Get PDF
    © 2020 The Authors Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extracranial magnetic fields generated by synchronised current in neuronal assemblies, however, such systems have fundamental limitations. In recent years, non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers (OPMs), in combination with novel techniques for accurate background magnetic field control, have promised to lift those restrictions offering an adaptable, motion-robust MEG system, with improved data quality, at reduced cost. However, OPM-MEG remains a nascent technology, and whilst viable systems exist, most employ small numbers of sensors sited above targeted brain regions. Here, building on previous work, we construct a wearable OPM-MEG system with ‘whole-head’ coverage based upon commercially available OPMs, and test its capabilities to measure alpha, beta and gamma oscillations. We design two methods for OPM mounting; a flexible (EEG-like) cap and rigid (additively-manufactured) helmet. Whilst both designs allow for high quality data to be collected, we argue that the rigid helmet offers a more robust option with significant advantages for reconstruction of field data into 3D images of changes in neuronal current. Using repeat measurements in two participants, we show signal detection for our device to be highly robust. Moreover, via application of source-space modelling, we show that, despite having 5 times fewer sensors, our system exhibits comparable performance to an established cryogenic MEG device. While significant challenges still remain, these developments provide further evidence that OPM-MEG is likely to facilitate a step change for functional neuroimaging

    Women, men and coronary heart disease: a review of the qualitative literature

    Get PDF
    Aim. This paper presents a review of the qualitative literature which examines the experiences of patients with coronary heart disease. The paper also assesses whether the experiences of both female and male patients are reflected in the literature and summarizes key themes. Background. Understanding patients' experiences of their illness is important for coronary heart disease prevention and education. Qualitative methods are particularly suited to eliciting patients' detailed understandings and perceptions of illness. As much previous research has been 'gender neutral', this review pays particular attention to gender. Methods. Published papers from 60 qualitative studies were identified for the review through searches in MEDLINE, EMBASE, CINAHL, PREMEDLINE, PsychINFO, Social Sciences Citation Index and Web of Science using keywords related to coronary heart disease. Findings. Early qualitative studies of patients with coronary heart disease were conducted almost exclusively with men, and tended to generalize from 'male' experience to 'human' experience. By the late 1990s this pattern had changed, with the majority of studies including women and many being conducted with solely female samples. However, many studies that include both male and female coronary heart disease patients still do not have a specific gender focus. Key themes in the literature include interpreting symptoms and seeking help, belief about coronary 'candidates' and relationships with health professionals. The influence of social roles is important: many female patients have difficulties reconciling family responsibilities and medical advice, while male patients worry about being absent from work. Conclusions. There is a need for studies that compare the experiences of men and women. There is also an urgent need for work that takes masculinity and gender roles into account when exploring the experiences of men with coronary heart disease

    Measurement of dynamic task related functional networks using MEG

    Get PDF
    The characterisation of dynamic electrophysiological brain networks, which form and dissolve in order to support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we introduce a method for measuring such networks in the human brain using magnetoencephalography (MEG). Previous network analyses look for brain regions that share a common temporal profile of activity. Here distinctly, we exploit the high spatio-temporal resolution of MEG to measure the temporal evolution of connectivity between pairs of parcellated brain regions. We then use an ICA based procedure to identify networks of connections whose temporal dynamics covary. We validate our method using MEG data recorded during a finger movement task, identifying a transient network of connections linking somatosensory and primary motor regions, which modulates during the task. Next, we use our method to image the networks which support cognition during a Sternberg working memory task. We generate a novel neuroscientific picture of cognitive processing, showing the formation and dissolution of multiple networks which relate to semantic processing, pattern recognition and language as well as vision and movement. Our method tracks the dynamics of functional connectivity in the brain on a timescale commensurate to the task they are undertaking

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    A controlled evaluation of an enhanced self-directed behavioural family intervention for parents of children with conduct problems in rural and remote areas.

    Get PDF
    Few studies have examined the impact of parenting interventions for families in rural and isolated areas who have children with conduct problems, where-access to professional services can be difficult. The present investigation compared the effects of three conditions, two levels of self-directed behavioral family intervention: an enhanced self-directed program that combined a self-help program using written materials and a weekly telephone consultation (ESD), a self-help program (SD) and a waitlist control group (WL). At postintervention the ESD group reported significantly lower levels of disruptive behaviour, and lower levels of dysfunctional parenting than the SD and WL controls, and higher levels of consumer satisfaction. At 6 months follow-up the main effects for the ESD group had been maintained. The SD group continued to evidence improvement from postintervention to follow-up such that 65% of children in the ESD condition and 57% of children in the SD condition showed clinical reliable change on measures of disruptive behaviour. Implications of findings and directions for future research are discussed

    Age-related differences in myeloarchitecture measured at 7 T

    Get PDF
    We have used the magnetisation transfer (MT) MRI measure as a primary measure of myelination in both the grey matter (GM) of the 78 cortical automated anatomical labelling (AAL) regions of the brain, and the underlying white matter in each region, in a cohort of healthy adults (aged 19 to 62 years old). The results revealed a significant quadratic trend in myelination with age, with average global myelination peaking at 42.9 years old in grey matter, and at 41.7 years old in white matter. We also explored the possibility of using the Nuclear Overhauser Enhancement (NOE) effect, which is acquired in a similar method to MT, as an additional measure of myelination. We found that the MT and NOE signals were strongly correlated in the brain and that the NOE effects displayed similar (albeit weaker) parabolic trends with age. We also investigated differences in cortical thickness with age, and confirmed a previous result of a linear decline of 4.5±1.2Όm/year
    • 

    corecore