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 2 

Abstract 25 

We have used the magnetisation transfer (MT) MRI measure as a primary measure of 26 

myelination in both the grey matter (GM) of the 78 cortical automated anatomical labelling (AAL)  27 

regions of the brain, and the underlying white matter in each region, in a cohort of healthy adults 28 

(aged 19 to 62 years old). The results revealed a significant quadratic trend in myelination with age, 29 

with average global myelination peaking at 42.9 years old in grey matter, and at 41.7 years old in white 30 

matter. We also explored the possibility of using the Nuclear Overhauser Enhancement (NOE) effect, 31 

which is acquired in a similar method to MT, as an additional measure of myelination. We found that 32 

the MT and NOE signals were strongly correlated in the brain and that the NOE effects displayed 33 

similar (albeit weaker) parabolic trends with age. We also investigated differences in cortical thickness 34 

with age, and confirmed a previous result of a linear decline of 4.5±1.2μm/year. 35 
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1 Introduction 42 

Many aspects of brain structure vary systematically as a function of age, such as cortical thickness, 43 

gyrification, subcortical volume, and white matter tract integrity (Bartzokis et al., 2012; de Mooij et 44 

al., 2018; Fjell et al., 2009; Hogstrom et al., 2013; Madan & Kensinger, 2016, 2017, 2018; Salat et al., 45 

2004; Tamnes et al., 2010). Foundational work in the early 1900s used post-mortem histological 46 

techniques on small numbers of individuals to show age-related differences in cortical myelination 47 

(Kaes, 1907), and also provided insights into related topology (Campbell, 1905; Flechsig, 1920; Hopf, 48 

1955; Vogt, 1906). However the data remain sparse and in vivo measures are really required to enable 49 

proper study across the life span. 50 

Magnetic resonance imaging (MRI) provides a range of markers of myeloarchitecture and 51 

myelination in vivo (Armstrong et al., 2004; Callaghan et al., 2014; Dick et al., 2012; Glasser & Van 52 

Essen, 2011; Mangeat et al., 2015; Sanchez-Panchuelo et al., 2012) and thus provides a unique 53 

opportunity to study differences in brain myelination through life (Callaghan et al., 2014; Draganski et 54 

al., 2011; Grydeland et al., 2013). These studies used ratio of T1 vs. T2 intensity or magnetisation 55 

transfer sequences to observe widespread age-related differences in myelination. Earlier work (Cho 56 

et al., 1997) observed a quadratic trend with in vivo human brain T1 measurements with age, however 57 

they suggested that this differences could originate in other factors beyond myelination including 58 

differences in membrane lipid content, brain volume, and cortical iron content. Another study 59 

(Yeatman et al., 2014) measured T1 in white matter fascicles and also found a parabolic trend with 60 

age, while in addition showing that T1 measurements were correlated to macromolecule tissue 61 

content. Previous work (Bartzokis et al., 2012) showed differences in T2 and diffusion measured during 62 

the life span related to brain development and brain repair, but T2 is strongly affected by iron content 63 

and diffusion measures depend on axonal geometry.  64 

 Magnetisation transfer (MT) imaging has been used to study myelination in a number of prior 65 

studies (Armstrong et al., 2004; Callaghan et al., 2014; Zaretskaya et al., 2018), providing an advantage 66 

over T1 based measures in that when quantified correctly, the quantitative MT signal is not affected 67 
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by cortical iron content (Lorio et al., 2014). Here we sought to examine age-related differences in 68 

myelination at 7 T using both quantitative MT and the related Nuclear Overhauser Enhancement 69 

(NOE) effect and provide more specific regional estimates of these effects.  70 

 While conventional MRI observes the properties of unrestricted cellular (‘free’) water protons, 71 

there are other ‘bound’ protons that also contribute to the MR signal. These consist of both 72 

macromolecular protons, and certain water protons which have their motion restricted through 73 

hydrogen bonding to the macromolecular surface. We can probe the presence of these 74 

macromolecules via the MT effect (Wolff & Balaban, 1989), by selectively saturating the bound 75 

protons (which resonate at a frequency which is off-resonance from free water). As the bound protons 76 

return to equilibrium they can transfer their magnetisation to free water, primarily through dipole-77 

dipole interactions (Edzes et al., 1977), and the resulting reduction in the free water signal can be 78 

detected using conventional MRI methods.  79 

The NOE signal is acquired in a similar way, except that the NOE signal corresponds to protons 80 

resonating specifically at -3.5ppm with respect to water (Jones et al., 2013). Details of the physical 81 

origins of this signal are given elsewhere, but in short the NOE signal occurs when energy is exchanged 82 

between two spins that are very close together (~0.5nm), and it is  generally associated with aliphatic 83 

and olefinic protons (Desmond et al., 2014). NOE and MT signals seem to vary in a similar way in the 84 

healthy brain, however this is not the case in all tissues (Shah et al., 2018). MRI at 7 T provides 85 

increased sensitivity for MT and NOE effects and also higher signal-to-noise ratio (SNR) and hence 86 

spatial resolution, which will improve sensitivity in studies of aging. Technical issues related to 87 

increased specific absorption rate (SAR) and inhomogeneities in the B1 transmit field can complicate 88 

the measurements, and MT measurements can also be affected by variations in T1 so the method of 89 

quantification used here took account of B1 and T1 variations via a look up table.  90 

In this study we aimed to investigate for the first time the variation of quantitative MT and 91 

NOE signals over the mid-life age range and to compare it to differences in cortical thickness. 92 

93 
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2 Methods 94 

2.1. Participants 95 

Ethical approval was granted by the University of Nottingham Medical School Research Ethics 96 

Committee. From an initial recruitment of 77 people giving a written informed consent for a combined 97 

MEG/MRI study (Hunt et al., 2016),  58 participants (aged 19 to 62 years old; 27 male; 52 right-handed) 98 

successfully fulfilled complete data acquisition with satisfactory data quality on the FreeSurfer cortical 99 

ribbon segmentation. Participants completed an online screening form to assess health and lifestyle, 100 

which included the Edinburgh Handedness Inventory (Oldfield, 1971), and were excluded from the 101 

study if they had current mental illness or diagnosis of mental illness within five years, any history of 102 

neurological disorder, or family history of highly heritable mental illness (such as schizophrenia or 103 

Huntington’s Chorea). It was not feasible to exclude people with any history of mental illness due to 104 

the high proportion of individuals who have, at some point, been diagnosed with a mental illness. This 105 

study is based on additional analyses of MRI data from a previously published dataset comparing 106 

magnetoencephalography and 7 T MRI (Hunt et al., 2016).  107 

2.2. MRI acquisition 108 

The MRI protocol has been described previously (Hunt et al., 2016), and is only summarised here. 109 

Participants were scanned using a Philips Achieva 7 T system with the Phase Sensitive Inversion 110 

Recovery sequence (PSIR: TI1/TI2=780ms/1600ms, 0.8mm isotropic voxels 240x216x160mm3 field of 111 

view) (Mougin et al., 2016) to delineate the cortex. MT and NOE were quantified by acquiring z-spectra 112 

(Geades et al., 2016), which plot the water proton signal measured at progressively different off 113 

resonance saturation frequencies. A z-spectrum was acquired using a magnetization transfer 114 

prepared- turbo field echo (MT-TFE) sequence with a train of 20 off-resonance saturation pulses 115 

(Gaussian-windowed sinc pulses, bandwidth 200Hz) applied at 17 frequency offsets in turn (0, ±1.0, -116 

2.3, +2.5, ±3, ±3.5, ±4.0, +4.5, -4.7, ±6.7 and ±16.7, and also +167 ppm acquired for normalization). 117 

This was repeated at three nominal B1 amplitudes (B1rms= 0.38, 0.75, and 1.25 μT) to provide sensitivity 118 

to effects more prevalent at high or low saturation powers (Geades et al., 2016). The TFE 3D imaging 119 

readout (TE/TR/FA=2.7ms/5.8ms/8°) provided 1.5mm isotropic image resolution across a FOV of 120 
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192x192x60mm3. The total acquisition time was 24 minutes total for the three powers. The z-spectra 121 

were motion corrected using FSL MCFLIRT (Woolrich et al., 2009) and B0 corrected (Mougin et al., 122 

2010). They were then fitted to a database of spectra simulated using the Bloch-McConnell equations 123 

(Geades et al., 2016).  This fit resulted in a map of the estimate for the size of the bound proton pool 124 

without contamination from chemical exchange saturation transfer (CEST) or NOE effects, and a 125 

separate map of NOE effects. 126 

2.3. Image analysis 127 

The PSIR images were used to create a conservative grey matter (GM) mask and a white matter 128 

(WM) mask with no overlap between them, using the boundary detection tool in FreeSurfer v5.3.0 129 

(Dale et al., 1999; Fischl, 2012). If a voxel lay on the boundary between the grey and white matter, it 130 

was excluded. PSIR images were then registered to the automated anatomical labelling (AAL) atlas 131 

(Tzourio-Mazoyer et al., 2002) using FSL, and the mean cortical thickness was calculated for each 132 

region within the AAL atlas, for each participant using FreeSurfer. Cortical thickness estimates were 133 

averaged across the whole brain and plotted against participant age. This was repeated for each AAL 134 

region separately and for data averaged across selections of AAL regions representative of each of the 135 

four lobes in the brain. A linear fit of cortical thickness against age was performed for all these 136 

conditions, and the p-values of the fit were calculated. False discovery rate (FDR) correction (α=.05) 137 

was performed on the data from the individual AAL regions to correct for multiple comparisons. The 138 

PSIR data was also used to provide an estimate T1 by comparing the signal from both readouts to a 139 

look-up table (Geades et al., 2016) 140 

The MT maps were registered to the PSIR images and masked first with the conservative GM 141 

or WM mask, and then with the cortical AAL atlas or its underlying subcortical regions, to produce 78 142 

GM-only and 78 WM-only ROIs for each participant, and a mean MT value was calculated for each 143 

region. MT was plotted against participant’s age for both the whole GM, and averaged across regions 144 

of interest (ROIs), corresponding to the four lobes as for cortical thickness. 14 regions of the brain 145 

were excluded due to limited field of view or poor B1 shimming in these areas (regions 1, 2, 24, 28, 32, 146 

34, 35, 40, 63, 67, 71, 72, 73, 74 of the cortical AAL atlas primarily located at the base of the brain). 147 
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Data were fitted with linear and quadratic functions and p-values of the fits were estimated. An F-test 148 

was performed to determine whether the quadratic fit described the data significantly better than the 149 

linear fit, by comparing the R2 of each fit considering the additional degree of freedom gained with a 150 

quadratic model. The quadratic coefficient within any GM region where the quadratic fit was 151 

significant was mapped onto a cortical surface. To explore spatial variability across the cortex in 152 

individual participants, we also calculated the standard deviation of MT across grey and white matter 153 

ROIs, and cortical thickness across the whole cortex and across the four lobes separately. This was 154 

repeated for WM with the quadratic coefficient also projected onto the cortical surface to allow the 155 

GM and WM differences to be compared. Finally, the participant-averaged MT in each GM region was 156 

plotted against the participant-averaged MT in the WM for the corresponding AAL-based region. This 157 

analysis was then repeated for the NOE data and the variation of T1 with age was also investigated.  158 

MT values for each GM-only and WM-only AAL ROI were averaged across all participants 159 

(removing age as a variable), and this was repeated for NOE, cortical thickness and T1. To investigate 160 

the relationship between WM and GM, the GM values were plotted against the WM values for MT 161 

and NOE separately, and a linear fit was performed. To investigate the relationship between MT and 162 

NOE, MT values were linearly fitted against NOE values for all GM and WM regions together, and for 163 

GM and WM regions separately. T1 values were also plotted against MT values in every GM region. To 164 

investigate whether cortex thickness was related to MT, a linear fit was performed to a plot of cortical 165 

thickness against GM MT.  166 

To explore variations across the cortex, the standard deviation in the values of MT was 167 

calculated between the voxels within each ROI, and across the whole of the GM and WM was 168 

calculated for each participant. These standard deviation values were plotted against age and a 169 

quadratic fit was performed and compared to a linear regression with the F-test. 170 

  171 
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3. Results 172 

3.1 Age-related differences in cortical thickness, MT, NOE and T1 173 

Figure 1A and Table 1 shows that cortical thickness reduces with age at a rate of 4.5±1.2 μm 174 

per year when averaged over the whole brain (p<.001), with significant linear trends displayed in all 175 

lobes of the brain (p<.002) except the temporal lobes (p=.6), using an α=.05 cutoff for determining 176 

significance.  177 

Figure 1B-C shows age-related differences in MT. For grey matter, a quadratic model fitted 178 

age-related trends better than a linear model for the whole brain and each of the four lobes (Table 179 

2). The quadratic model also fitted better for most white matter, with the exception of the temporal 180 

lobes (p=.055). The quadratic coefficients, p-values and the F-test results of each of these quadratic 181 

fits across the different lobes are presented in Table 2.  Figure 1A and B show that GM MT showed a 182 

markedly different topological pattern of age-related differences in MT compared to cortical 183 

thickness. 184 

Figure 1B-C and Table 2 also shows that age-related trends for NOE were similar but 185 

significantly weaker than for MT. As several of the regional models were non-significant, only the 186 

global NOE trends are displayed. Figure S1A-B and Table 2 show that T1 also varied quadratically with 187 

age in GM and WM.  188 

3.2 Relationship between GM and WM within same AAL region 189 

Figure 2 shows that the MT in each AAL ROI, averaged across participants, varied linearly with MT 190 

in the underlying WM for the same AAL region (R2=.384, p<.0001). A similar relationship was observed 191 

for NOE (R2=.343, p<.0001).  192 

3.3 Relationship between NOE, cortical thickness, T1, and MT 193 

Figure S1C and D shows that in GM ROIs (averaged across participants) there was no correlation 194 

between T1 and MT (p>.9), but a negative linear correlation was observed for WM (p<.001, R2=.23). If 195 

only participants aged under 42 were considered for GM then a non significant linear trend was 196 

observed (p=0.24)  197 
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Figure S2A shows that there is a strong linear relationship between MT and NOE averaging across 198 

all participants for both GM and WM ROIs (R2=.9478, p<.0001). This relationship was persisted when 199 

considering either GM (R2=.305, p<.0001) or WM (R2=.282, p<.0001) ROIs alone.  200 

No significant correlation was found between cortical thickness and GM MT averaging across all 201 

participants for each ROI (R2=.004 and p=.59 for a linear regression). However Figure S2B shows that 202 

when this analysis was restricted to participants under the age of 42 years old, there was a trend for 203 

cortical thickness to decrease as MT increased (R2=0.056, p=0.055).  204 

3.4 Variation across the cortex 205 

Figure 3 and Table 1 and 3 shows the variation with age in standard deviation in cortical thickness 206 

and MT values across the different regions. For cortical thickness (Figure 3A) only the occipital and 207 

temporal lobes showed a significantly non-zero linear trend. Figure 3B shows that the standard 208 

deviation of MT within the GM showed a significantly quadratic trend with age across the whole brain 209 

and across all lobes except for the occipital lobes. Figure 3C shows that there was no difference in the 210 

standard deviation of MT with age in WM (p>0.05;  Table 3).  211 

 212 

4 Discussion 213 

It is well known that brain structural measures such as cortical thickness and gyrification vary 214 

with age. Here we replicate previous reports of a decrease in cortical thickness with age (Fjell et al., 215 

2009; Hogstrom et al., 2013; Madan & Kensinger, 2016, 2018; Salat et al., 2004), and complement this 216 

with two additional quantitative MRI measures related to tissue composition, magnetisation transfer 217 

(MT) and Nuclear Overhauser Enhancement (NOE). MT is widely used to study demyelination in 218 

Multiple Sclerosis patients (Levesque et al., 2010), and has been proven to be strongly correlated with 219 

myelin content in the brain (Schmierer et al., 2007).  Simple measures of MT such as MTR can also be 220 

affected by the T1 of the tissue but the quantitative MT measures used here are corrected for the 221 

variations in water T1 and hence are more specifically sensitive to myelination. This is important since 222 

T1 decreases as either myelin or iron content increase. It is known from histology and susceptibility 223 

weighted MRI that iron deposition can continue until the age of 40 or even 60 years of age (Hallgren 224 
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& Sourander, 1958, Wang et al., 2012), and increases further in older age in some deep grey matter 225 

areas (Hallgren & Sourander, 1958). In earlier life iron is required in myelin producton in 226 

oligodendrocytes (Connor & Menzies, 1996), but later in life the iron accumulation may be more 227 

pathological. 228 

Our quantitative measures showed widespread differences in MT through midlife in the 229 

cortical grey and white matter, and in contrast to the linear decrease in cortical thickness, these 230 

followed a parabolic profile peaking at about 42 years of age (varying between 35-48 across different 231 

brain regions). Where as MT values are expected to increase with myelination, T1 is expected to 232 

decrease with myelination (and with increasing iron). T1 showed a minimum at 49 years in GM, and at 233 

45 years in WM. The trends were similar across the whole brain but were stronger in the WM regions, 234 

possibly because of the greater absolute MT value in those regions. These results suggest that 235 

myelination increases until the age of about 40, which is consistent with evidence that the production 236 

of oligodendrocytes can be associated with learning new skills (McKenzie et al., 2014). In later life 237 

evidence from electron microscope preparations in non-human primates has related decreases in 238 

myelination to the breakdowns in the myelin sheath and white-matter integrity (Peters, 2002; Peters 239 

et al., 1996). This decrease in myelination appears to a key facet of the general cortical atrophy known 240 

to occur with aging, as other mechanisms (e.g., a reduction of cortical neurons) have been ruled out 241 

(Gefen et al., 2015; von Bartheld, 2018). 242 

The age at which we observed peak MT agrees with the work of Yeatman et al. (Yeatman et 243 

al., 2014), who found the maximum in 1/T1 in WM at ~40 years. Cho et al. (1997) also found a minimum 244 

in T1 at about 40 years in WM, but found a mimium at 60 years in cortex. We found that in general MT 245 

and NOE peaked slightly later in GM than WM but the differences were small (Table 2). However 246 

similar to Cho et al., we did observe T1 in GM to have a minimum at a later age (48.5 years). These 247 

differences between MT and T1 will reflect the opposing effects of decreasing myelination (decreases 248 

MT and increases T1) and increasing iron (decreases T1)  in the brain in later life.  The opposing effect 249 

of myelination on MT and T1 was seen in WM (Figure S1D) but not in GM (Figure S1C and E) again 250 

probably reflecting the effect of varying iron concentration in GM with age and also across the cortex 251 
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(Cox & Gowland, 2010), as the data is plotted for each ROI averaged across all participants.  These 252 

results all suggest that quantitative MT is a more specific marker of myelination than T1. It should be 253 

noted that some MT measures (in particular the MT Ratio) can be dependent upon T1, but the 254 

quantitative method used here corrects for these effects (Geades et al., 2016).  Furthermore, previous 255 

studies (Tyler & Gowland, 2005) have shown that the macromolecular T1 has little effect on the 256 

measured MT. The use of multiple MRI modalities (including qMT, T1, susceptibility and T2 mapping) 257 

(Warntjes et al., 2016) would make it easier to tease appart the differences in iron and myelination 258 

occuring in the brain with age. These findings build on previous work, such as Taubert et al. (2020), 259 

where global changes in MT have been demonstrated in both grey and white matter in relation to age, 260 

though this study examined mid- to old-age adults (ages 46-86) . 261 

We found that the value of MT in each ROI (averaged across all participants) was correlated 262 

with the MT measured in the underlying WM in the same ROI, and a similar result was found for NOE 263 

(Figure 2). This is expected since the connectivity bewteen areas of GM is achieved primarility by axons 264 

in the underlying WM (for instance the u-fibres) and may suggest an additional means of studying 265 

connectivity.  266 

 NOE is a relatively new measure, which has also been shown to vary with myelin concentration 267 

in  vivo, for example in the visual cortex (Mougin et al., 2013). The NOE signal in the brain is thought 268 

to originate in transfer of magnetisation from aliphatic backbones of mobile macromolecules and 269 

proteins, with the signal possibly relayed via molecular exchange (van Zijl et al., 2018).  Here we found 270 

that MT and NOE were well correlated across all GM and WM regions suggesting that similar 271 

mechanisms were affecting them both. The fitting method used here models MT and NOE 272 

simultaneously and thus minimises biasing of the NOE signal by MT. Furthermore this fitting method 273 

has found this relationship between NOE and MT breaks down in blood where the NOE effect is 274 

relatively larger (Shah et al., 2018). This suggests that NOE is correlated to myelination independent 275 

of MT, and might relate to the fact that NOE is thought to be sensitive to the aliphatic groups in myelin. 276 

The sensitivity of the NOE signal is lower than MT, but nonetheless, this measure has not yet been 277 

explored fully and thus these results may play a role in planning future experiments.  278 
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 The standard deviation in GM was an order of magnitude larger than that in white matter and 279 

it seems likely that this reflects real variation across the ROI. The GM ROIs were smaller than the WM 280 

ROIs which will have caused a larger standard error in both the mean and the standard deviation, but 281 

will not influence the participant-averaged value of standard deviation. Furthermore the absolute 282 

value of MT in GM was about half that in WM but we do not expect this to explain the increase the 283 

absolute variance in the measurement and have shown that the interindividual variability is the same 284 

in GM and WM MT measured with this method (Geades et al., 2016). There was a linear increase in 285 

standard deviation in MT values across GM with age of about 30% (dominated by the period up to the 286 

age 40), but no singificant difference in the standard deviation of MT in WM. We propose that this 287 

increase in variation in MT with age reflects ongoing cortical plasticity over this period, for instance 288 

relating to longitudinal changes in structural networks (Wu et al., 2013).  289 

Although these results indicate that quantitative MT can be a more specific measure of 290 

myelination, caution must be excercised when measuring MT. We acquired a full z-spectrum which is 291 

a more specific measure than the conventional MT ratio (Geades et al., 2016), although the sampling 292 

frequencies chosen were optimized to measure amide proton transfer as well as NOE and MT and so 293 

more precise or quicker results could be achieved with further optimization of the sampling to study 294 

myelination in future. It is likely that MT is also dependent on other macromolecules present in tissue, 295 

for instance the MT signal will reduce with edema in pathology (Vavasour et al., 2011). A recent paper 296 

showed that the MT ratio measure (MTR) did not correlate with myelin content in an experimental 297 

model of demyelination (Fjær et al., 2015), although this experimental model used is likely to have 298 

also caused T1 differences that will also have affected the MTR measure. Nonetheless, the MT pool 299 

size as measured here is not corrected for variations in the exchange rate of labile protons with free 300 

water, which depend on temperature and pH (Ward & Balaban, 2000), but are not expected to vary 301 

much in healthy individuals.  302 

Finally, it is important to note that the cortical segmentation performed on a T1-weighted 303 

scan, such that a change in T1 could potentially shift the pial surface (for instance an increase in cortical 304 

iron with age, or myelination during development (Natu et al., 2019) could both reduce cortical 305 
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thickness). Since myelination varies across the cortical layer, such a shift of the boundary of the cortical 306 

layer could bias the measurements of MT (Lorio et al., 2016), and indeed averaging across participants, 307 

ROIs with higher MT tended to be thinner which may reflect differential myelination across the cortical 308 

layer (Figure S2B). However to limit any effect of this, we used PSIR for segmentation which has 309 

reduced sensitivity to proton density and T2* compared to the MPRAGE scan and the voxels at the 310 

boundary of the cortical ribbon were excluded from the analysis. Future work could use a voxel based 311 

analysis to study this grey/white boundary. However no correlation could be seen between the 312 

coefficients of cortical thickness difference with age compared to MT differences with age when 313 

considering solely thin, medium or thick cortical ribbon regions, suggesting that the cortical ribbon 314 

thickness did not influence the MT results presented here.   315 

 316 

5. Conclusion 317 

We have used MT as a marker for myelination due to its reduced sensitivity to aspects of brain 318 

structure other than myelin, and have shown that it has a strong parabolic trend with age in both GM 319 

and WM, peaking on average at age 42. We also introduce the NOE effect as a possible marker for 320 

myelination, however further work into the true origin of this signal is necessary to explore where this 321 

measure may best be an asset.  322 
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 515 

  Linear coefficient (μm/year) 
± 95% confidence intervals 

p-value of 
linear trend 

Cortical thickness Global -4.6 ± 1.2 .0004 * 

Frontal -4.3 ± 1.4 .0028 * 

Parietal -5.6 ± 1.7 .0019 * 

Occipital -5.2 ± 1.3 .0002 * 

Temporal 1.0 ± 1.8 .59 

Standard deviation 
in cortical thickness 
across the ROI 

Global -0.09 ± 0.01 .47 

Frontal -0.3 ± 0.1 .058 

Parietal -0.1 ± 0.2 .62 

Occipital +0.49 ± 0.19 .015* 

Temporal -0.47± 0.18 .011* 

 516 
Table 1:  Coefficients and significance of linear differences in cortical thickness with age globally across 517 
the brain and in each lobe of the brain separately (* indicates a significant trend p<0.05) 518 
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  Quadratic 
coefficient (x10-4  
[MT%/NOE%/T1]2 
/ year) ± 95% 
confidence 
intervals 

Age of 
peak 
(years) 

p-value of 
quadratic 
trend vs. 
null 
hypothesis 

p-value from 
F-test on 
quadratic 
model 
compared to 
linear model 

MT Grey matter Global -14 ± 3 42.9 .00002 * .000005 * 

Frontal -16 ± 4 41.9 .0008 * .0005 * 

Parietal -14 ± 4 40.6 .0009 * .0007 * 

Occipital -11 ± 4 45.8 .0074 * .0023 * 

Temporal -17 ± 7 45.2 .0115 * .0044 * 

White 
matter 

Global -23 ± 5 41.7 .0001 * .000001 * 

Frontal -26 ± 8 41.3 .0011 * .0008 * 

Parietal -20 ± 6 41.1 .0025 * .0019 * 

Occipital -24 ± 7 43.8 .0005 * .0002 * 

Temporal -15 ± 9 44.6 .0847 .0546 

NOE Grey matter Global -5 ± 4 44.4 .016 * .0078 * 

Frontal -6 ± 8 47.0 .125  .0711  

Parietal -6 ± 4 40.6 .003 * .0022 * 

Occipital -3 ± 82 45.4 .189  .1352  

Temporal -5 ± 36 44.0 .092  .0641  

White 
matter 

Global -8 ± 5 40.9 .005 * .0041 * 

Frontal -13 ± 9 41.6 .005 * .0033 * 

Parietal -6 ±7 42.8 .066  .0495 * 

Occipital -5 ±7 42.8 .1656  .1371  

Temporal -4 ±.8 37.5 .341  .3704  

T1 Grey matter Global 1.7 ± 1.4 48.5 .005 * .0006 * 

White 
matter 

Global 0.74 ± 0.38 44.8 .00002 * .000004 * 

Table 2: Coefficients and significance of the quadratic model applied to differences in measured 519 
MT, NOE and T1 with age globally across the brain and in each lobe of the brain separately (* 520 
indicates a significant non-zero trend p<0.05) 521 
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   Quadratic 
coefficient (x 
10-4 MT%2 / 
year) ± 95% 
confidence 
intervals 

Age of 
Peak 
(years) 

p-value of 
quadratic 
trend vs. 
null 
hypothesis 

p-value 
from F-test 
on quadratic 
model 
compared to 
linear model 

MT Grey 
Matter 

Global -5 ± 1 48.90 .000002 * .000005 * 

Frontal -5 ± 2 50.31 .00009 * .0050 * 

Parietal -5 ± 2 49.07 .00020 * .0038 * 

Occipital -2 ± 2 62.67 .00004 * .1756 

Temporal -9 ± 3 46.20 .00048 * .0006 * 

White 
matter 

Global -0.1 ± 0.4 62.35 .1588 .7530 

Frontal -0.4 ± 0.2 35.54 .1527 .0633 

Parietal -0.3 ± 0.5 30.29 .4868 .6094 

Occipital -0.2 ± 0.4 42.14 .8008 .6879 

Temporal -0.9 ± 0.5 40.83 .1183 .0196 * 

Table 3: Coefficients and significance of the quadratic model applied to differences in the standard 522 
deviation of measured MT with age globally across the brain and in each lobe of the brain separately 523 
(* indicates a significant non-zero trend p<0.05)  524 
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 525 
Figure 1. Age-related differences in (A) global and lobe-wise cortical thickness, and MT (closed 526 
circles) from (B) grey matter (C) and white matter. NOE values are also shown on the global curves 527 
(open circles). Dotted lines correspond to 95% confidence intervals. Also shown is the topology of 528 
age-related differences in MT (with the white matter map projected onto overlying grey matter); 529 
regions shown in grey did not exhibit a significant quadratic or linear trend.  530 
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 531 
Figure 2. Variation in MT (left) and NOE (right) in GM with that in underlying WM within the same 532 
AAL region, averaged across individuals for each AAL region.     533 
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 534 
Figure 3. Age-related variations in SD of global and lobe-wise (A) cortical thickness and MT from (B) 535 
grey matter and (C) white matter.  536 
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 537 
Figure S1. Age-related variations in T1 of (A) global grey matter (B) and white matter, plotted for 538 
each participant separately. Variation of T1 with MT (plotted for each ROI averaged across 539 
participants) for (C) grey matter and (D) white matter.  540 
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 541 
Figure S2. Correlation of MT vs. NOE for each AAL region averaged across individuals, shown in panel 542 
A. Panel B shows the variation in cortical thickness with GM MT for each AAL region, averaging 543 
across individuals aged under 42 years old only. 544 


