369 research outputs found
The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family.
The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed {Delta}bldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although {Delta}bldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC+ parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein
Experimental measurement of focused wave group and solitary wave overtopping
Prediction of individual wave overtopping events is important in assessing danger to life and property, but data are sparse and hydrodynamic understanding is lacking. Laboratory-scale waves of three distinct types were generated at the Coastal Research Facility to model extreme waves overtopping a trapezoidal embankment. These comprised wave groups of compact form, wave groups embedded in a background wave field, and a solitary wave. The inshore wave propagation was measured and the time variation of overtopping rate estimated. The total volume overtopped was measured directly. The experiments provide well-defined data without uncertainty due to the effect of reflection on the incident wave train. The dependence of overtopping on a range of wave shapes is thus determined and the influence of wave-wave interactions on overtopping assessed. It was found that extreme overtopping may arise from focused waves with deep troughs rather than large crests. Furthermore, overtopping waves can be generated from small wave packets without affecting the applicability of results to cases in which there are surrounding waves. Finally, overtopping from a solitary wave is comparable with overtopping from focused wave groups of the same amplitude. Ā© 2011 Copyright International Association for Hydro-Environment Engineering and Research
A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, NiāFeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid.
Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, NiāFeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ā¼1220 (the Fe, NiāFeS cotectic temperature) and ā¼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites.
Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections
Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling
The short-lived Hf-W decay system is a powerful chronometer
for constraining the timing of metal-silicate separation and core formation in
planetesimals and planets. Neutron capture effects on W isotopes, however,
significantly hamper the application of this tool. In order to correct for
neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron
dosimeter. This study applies this method to IAB iron meteorites, in order to
constrain the timing of metal segregation on the IAB parent body. The
W values obtained for the IAB iron meteorites range from -3.61
0.10 to -2.73 0.09. Correlating Pt with
W data yields a pre-neutron capture W of -2.90 0.06. This
corresponds to a metal-silicate separation age of 6.0 0.8 Ma after CAI
for the IAB parent body, and is interpreted to represent a body-wide melting
event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic
break-up and subsequent reassembly of the parent body. Thermal models of the
interior evolution that are consistent with these estimates suggest that the
IAB parent body underwent metal-silicate separation as a result of internal
heating by short-lived radionuclides and accreted at around 1.4 0.1 Ma
after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC
BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/
Symptom experience and subsequent mortality: results from the West of Scotland Twenty-07 study
Background: Associations between symptom experience and mortality have rarely been investigated. One study has suggested that the number of symptoms people experience may be an important predictor of mortality. This novel and potentially important finding may have important implications but needs to be tested in other cohorts. Methods: 858 people aged around 58 years were interviewed by nurses in 1990/1 as part of the West of Scotland Twenty-07 Study. They were asked about the presence of symptoms in the last month from a checklist of 33 symptoms. Measures of morbidity included symptom type (respiratory, musculoskeletal, gastrointestinal, mental health, neurological, systemic) and symptom summary measures looking at the number and impact of symptoms (total number; number participants tended to have; number participants did not tend to have; number which restricted usual activities; number which led to GP consultation). Hazard ratios for thirteen-year all-cause mortality were calculated for symptom types, symptom summary measures, and self-assessed health with and without adjustment. Results: On unadjusted analysis, and after adjusting for gender, socio-economic status and smoking, mortality was elevated in individuals reporting respiratory, systemic and mental health symptoms. After additional adjustment for chronic conditions and self-assessed health, only the association between mental health symptoms and mortality remained significant. On unadjusted analysis, and after adjusting for gender, socio-economic status and smoking, mortality was elevated in individuals with many (ā„ 6) symptoms in four of the symptom summary measures examined. These relationships were no longer significant after additional adjustment for chronic conditions and self-assessed health. A clear trend of increasing mortality as self-assessed health became poorer was observed. This pattern remained statistically significant after adjustment for gender, socio-economic status, smoking, chronic conditions and the total number of symptoms experienced. Conclusion: Symptoms often thought of as minor may have important consequences later in life especially for those reporting mental health-related symptoms or those experiencing many symptoms. In this study however, self-assessed health appeared to be a better predictor of mortality than the type or number of symptoms experienced, even when the tendency to have and impact of the symptoms were taken into account
Quantifying non-star formation associated 8um dust emission in NGC 628
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find
that between 30-43% of its 8um dust emission is not related to recent star
formation. Contributions from dust heated by young stars are separated by
identifying HII regions in the Ha map and using these areas as a mask to
determine the 8um dust emission that must be due to heating by older stars.
Corrections are made for sub-detection-threshold HII regions, photons escaping
from HII regions and for young stars not directly associated to HII regions
(i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um
emission can be expected given dust and PAH absorption cross-sections, a
realistic star-formation history, and the observed optical extinction values. A
Fourier power spectrum analysis indicates that the 8um dust emission is more
diffuse than the Ha emission (and similar to observed HI), supporting our
analysis that much of the 8um-emitting dust is heated by older stars. The 8um
dust-to-Ha emission ratio declines with galactocentric radius both within and
outside of HII regions, probably due to a radial increase in disk transparency.
In the course of this work, we have also found that intrinsic diffuse Ha
fractions may be lower than previously thought in galaxies, if the differential
extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap
The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic
Purpose.
To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations.
Methods.
Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array.
Results.
While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with āL/M interchangeā mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (ā¼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic.
Conclusions.
The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for evaluating treatment efficacy
A Comparison of Components of Written Expression Abilities in Learning Disabled and Non-Learning Disabled Students at Three Grade Levels
Although written language plays a critical role in academic success, little empirical evidence exists on the normal development of processes involved in producing written products. Even less is known about the writing performance of LD children. This study empirically compared the written products of LD and normal students at three grade levels on The Test of Written Language. Results showed that LD subjects scored significantly lower than normal subjects on most written expression abilities, especially in the mechanical tasks of spelling, punctuation, and word usage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
The emission by dust and stars of nearby galaxies in the Herschel KINGFISH survey
Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet (UV) to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades (from 10(-2.2) to 10(0.5)). The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low by 17% on average. We find that the dust/stellar flux ratio varies with morphology and total infrared (IR) luminosity, with dwarf galaxies having faint luminosities, spirals having relatively high dust/stellar ratios and IR luminosities, and some early types having low dust/stellar ratios. We also find that dust/stellar flux ratios are related to gas-phase metallicity ((log(f(dust)/f(*)) over bar) = -0.66 +/- 0.08 and -0.22 +/- 0.12 for metal-poor and intermediate-metallicity galaxies, respectively), while the dust/stellar mass ratios are less so (differing by approximate to 0.2 dex); the more metal-rich galaxies span a much wider range of the flux ratios. In addition, the substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we also show that early types tend to have slightly warmer temperatures (by up to 5 K) than spiral galaxies, which may be due to more intense interstellar radiation fields, or possibly to different dust grain compositions. Finally, we show that early types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing (if limited) star formation as well as to the radiation field from older stars, which is heating the dust grains
- ā¦