1,031 research outputs found

    Categorification of persistent homology

    Full text link
    We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are diagrams, indexed by the poset of real numbers, in some target category. The set of such diagrams has an interleaving distance, which we show generalizes the previously-studied bottleneck distance. To illustrate the utility of this approach, we greatly generalize previous stability results for persistence, extended persistence, and kernel, image and cokernel persistence. We give a natural construction of a category of interleavings of these diagrams, and show that if the target category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational Geometr

    The effect of 12C + 12C rate uncertainties on s-process yields

    Full text link
    The slow neutron capture process in massive stars (the weak s-process) produces most of the s-only isotopes in the mass region 60 < A < 90. The nuclear reaction rates used in simulations of this process have a profound effect on the final s-process yields. We generated 1D stellar models of a 25 solar mass star varying the 12C + 12C rate by a factor of 10 and calculated full nucleosynthesis using the post-processing code PPN. Increasing or decreasing the rate by a factor of 10 affects the convective history and nucleosynthesis, and consequently the final yields.Comment: Conference proceedings for the Nuclear Physics in Astrophysics IV conference, 8-12 June 2009. 4 pages, 3 figures. Accepted for publication to the Journal of Physics: Conference Serie

    On Haagerup's list of potential principal graphs of subfactors

    Full text link
    We show that any graph, in the sequence given by Haagerup in 1991 as that of candidates of principal graphs of subfactors, is not realized as a principal graph except for the smallest two. This settles the remaining case of a previous work of the first author.Comment: 19 page

    Solar neutrino detection in a large volume double-phase liquid argon experiment

    Full text link
    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the "neutrino floor" (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.Comment: 21 pages, 7 figures, 6 table

    A proximal femoral implant preserves physiological bone deformation: a biomechanical investigation in cadaveric bones

    No full text
    The aim of this study was to compare the perturbances in bone deformation patterns of the proximal femur due to a conventional cemented femoral stem and a novel uncemented implant designed on the principles of osseointegration. Five matched pairs of fresh frozen human femora were mechanically tested. Bone deformation patterns, measured with a video digitizing system under 1.5 kN joint force, showed that the cemented Spectron femoral implant caused significant alterations to the proximal femoral deformation pattern, whereas the Gothenburg osseointegrated titanium femoral implant did not significantly alter the bone behaviour (p < 0.05). Vertical micromotions measured under 1 kN after 1000 cycles were within the threshold of movement tolerable for bone ingrowth (21 microm for the Gothenburg system and 26 microm for the cemented implant).Published versio

    Aniline incorporated silica nanobubbles

    Get PDF
    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell

    Constraints on Type Ib/c and GRB Progenitors

    Get PDF
    Although there is strong support for the collapsar engine as the power source of long-duration gamma-ray bursts (GRBs), we still do not definitively know the progenitor of these explosions. Here we review the current set of progenitor scenarios for long-duration GRBs and the observational constraints on these scenarios. Examining these, we find that single-star models cannot be the only progenitor for long-duration GRBs. Several binary progenitors can match the solid observational constraints and also have the potential to match the trends we are currently seeing in the observations. Type Ib/c supernovae are also likely to be produced primarily in binaries; we discuss the relationship between the progenitors of these explosions and those of the long-duration GRBs.Comment: 36 pages, 6 figure

    Domain formation in DODAB–cholesterol mixed systems monitored via nile red anisotropy

    Get PDF
    The effect of the cholesterol (Ch) on liposomes composed of the cationic lipid dioctadecyldimethylammonium bromide (DODAB) was assessed by studying both the steady-state and time-resolved fluorescence anisotropy of the dye Nile Red. The information obtained combined with analysis of the steady-state emission and luorescence lifetime of Nile Red (NR) for different cholesterol concentrations (5–50%) elucidated the presence of “condensed complexes” and cholesterol-rich domains in these mixed systems. The steady-state fluorescence spectra were decomposed into the sum of two lognormal emissions, emanating from two different states, and the effect of temperature on the anisotropy decay of Nile Red for different cholesterol concentrations was observed. At room temperature, the time-resolved anisotropy decays are indicative of NR being relatively immobile (manifest by a high r∞ value). At higher temperature, rotational times ca. 1 ns were obtained throughout and a trend in increasing hindrance was seen with increase of Ch content
    corecore