15 research outputs found

    Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents

    Get PDF
    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51ngL−1, estradiol (E2) up to 6ngL−1, and ethinylestradiol (EE2) up to 2ngL−1 in the 90samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at µgL−1 concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R 2=0.6

    Systemics-Viable Solutions for Complex Challenges

    No full text

    Environmentally Oriented Design and Assessment of Chemical Products and Processes

    Get PDF
    In this paper we illustrate our work on integrated process and product design and assessment using three examples: a small calorimeter for quick reaction screening, a multi-criteria process technology assessment method, and a screening tool for exposure-based risk assessment of chemical products. A short introduction is given on our general framework for considering environmental objectives in chemical product and process design

    Direct and Air-Mediated Transfer of Labeled SVOCs from Indoor Sources to Dust.

    No full text
    Two small-scale field studies were conducted to investigate the transfer of substances from products into dust due to direct and air-mediated transfer. The project focused on semivolatile organic compounds (SVOCs), which are frequently found in and re-emitted from dust. For the field studies, four artificial products containing deuterium-labeled SVOCs (eight phthalates and adipates) were installed in residential indoor environments. Two plastic products were installed vertically to investigate substance transfer due to evaporation into air. One plastic product and a carpet were installed horizontally to investigate the direct transfer from source to dust. A pyrethroid was intentionally released by spraying a commercial spray. Dust samples were collected from the floor, elevated surfaces in the room and the surfaces of the horizontally installed products. We observed that the dust concentrations of substances exclusively transferred via air were similar at different collection sites, but the concentrations of chemicals present in horizontal products were up to 3 orders of magnitude higher in dust deposited on the source. We conclude that direct transfer from source into dust substantially increases the final SVOC concentration in dust in contact with the source, regardless of the vapor pressure of investigated SVOCs, and may lead to larger human exposure
    corecore