1,413 research outputs found

    Cavity-enhanced optical detection of carbon nanotube Brownian motion

    Get PDF
    Optical cavities with small mode volume are well-suited to detect the vibration of sub-wavelength sized objects. Here we employ a fiber-based, high-finesse optical microcavity to detect the Brownian motion of a freely suspended carbon nanotube at room temperature under vacuum. The optical detection resolves deflections of the oscillating tube down to 50pm/Hz^1/2. A full vibrational spectrum of the carbon nanotube is obtained and confirmed by characterization of the same device in a scanning electron microscope. Our work successfully extends the principles of high-sensitivity optomechanical detection to molecular scale nanomechanical systems.Comment: 14 pages, 11 figure

    Resonant coupling of a Bose-Einstein condensate to a micromechanical oscillator

    Get PDF
    We report experiments in which the vibrations of a micromechanical oscillator are coupled to the motion of Bose-condensed atoms in a trap. The interaction relies on surface forces experienced by the atoms at about one micrometer distance from the mechanical structure. We observe resonant coupling to several well-resolved mechanical modes of the condensate. Coupling via surface forces does not require magnets, electrodes, or mirrors on the oscillator and could thus be employed to couple atoms to molecular-scale oscillators such as carbon nanotubes.Comment: 9 pages, 4 figure

    On the origin of the extremely different solubilities of polyethers in water

    Get PDF
    The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([–CH2–CH2–O–]n) which is infinitely soluble, and polyoxymethylene ([–CH2–O–]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities

    The Rigidly Rotating Magnetosphere of Sigma Ori E

    Full text link
    We attempt to characterize the observed variability of the magnetic helium-strong star sigma Ori E in terms of a recently developed rigidly rotating magnetosphere model. This model predicts the accumulation of circumstellar plasma in two co-rotating clouds, situated in magnetohydrostatic equilibrium at the intersection between magnetic and rotational equators. We find that the model can reproduce well the periodic modulations observed in the star's light curve, H alpha emission-line profile, and longitudinal field strength, confirming that it furnishes an essentially correct, quantitative description of the star's magnetically controlled circumstellar environment.Comment: 4 pages, 3 figures, accepted by Ap

    Wind Circulation in Selected Rotating Magnetic Early-B Stars

    Full text link
    The rotating magnetic B stars have oblique dipolar magnetic fields and often anomalous helium and metallic compositions. These stars develop co-rotating torus-shaped clouds by channelling winds from their magnetic poles to an anchored planar disk over the magnetic equator. The line absorptions from the cloud can be studied as the complex rotates and periodically occults the star. We describe an analysis of the clouds of four stars (HD184927, beta Cep, sigma Ori E, and HR6684). From line synthesis models, we find that the metallic compositions are spatially uniform over the stars' surfaces. Next, using the Hubeny CIRCUS code, we demonstate that periodic UV continuum fluxes can be explained by the absorption of low-excitation lines. The analysis also quantifies the cloud temperatures, densities, and turbulences, which appear to increase inward toward the stars. The temperatures range from about 12,000K for the weak Fe lines up to temperatures of 33,000K for N V absorptions, which is in excess of temperatures expected from radiative equilibrium. The spectroscopic hallmark of this stellar class is the presence of strong C IV and N V resonance line absorptions at occultation phases and of redshifted emissions at magnetic pole-on phases. The emissions have characteristics which seem most compatible with the generation of high-energy shocks at the wind-cloud interface, as predicted by Babel.Comment: 19 pages, Latex plus 6 figures A&A single-spaced, accepted by Astronomy & Astrophysics. Files available by ftp at nobel.stsci.edu/pub/aapaper

    ICP polishing of silicon for high quality optical resonators on a chip

    Full text link
    Miniature concave hollows, made by wet etching silicon through a circular mask, can be used as mirror substrates for building optical micro-cavities on a chip. In this paper we investigate how ICP polishing improves both shape and roughness of the mirror substrates. We characterise the evolution of the surfaces during the ICP polishing using white-light optical profilometry and atomic force microscopy. A surface roughness of 1 nm is reached, which reduces to 0.5 nm after coating with a high reflectivity dielectric. With such smooth mirrors, the optical cavity finesse is now limited by the shape of the underlying mirror

    Prediction of Bystander Intervention Behavior in a Sexual Assault Situation: The Role of Religiosity, Empathy, and Gratitude

    Get PDF
    Bystander intervention in potential sexual assault situations is a common method of helping to address sexual violence on college campuses. Although numerous variables have been shown to mediate bystander intervention behavior, the pool of potential correlates is limited. The present study used regression analysis to determine the relationship between bystander behavior and three predictors: religiosity, gratitude, and victim empathy. Consistent with prior research, both religiosity and gratitude significantly predicted bystander behavior. Contrary to prior research, the relationship between victim empathy and bystander behavior was negative. Findings are discussed relating to potential bystander intervention programs, and future research, particularly on gratitude, is suggested
    • …
    corecore