The rotating magnetic B stars have oblique dipolar magnetic fields and often
anomalous helium and metallic compositions. These stars develop co-rotating
torus-shaped clouds by channelling winds from their magnetic poles to an
anchored planar disk over the magnetic equator. The line absorptions from the
cloud can be studied as the complex rotates and periodically occults the star.
We describe an analysis of the clouds of four stars (HD184927, beta Cep, sigma
Ori E, and HR6684). From line synthesis models, we find that the metallic
compositions are spatially uniform over the stars' surfaces. Next, using the
Hubeny CIRCUS code, we demonstate that periodic UV continuum fluxes can be
explained by the absorption of low-excitation lines. The analysis also
quantifies the cloud temperatures, densities, and turbulences, which appear to
increase inward toward the stars. The temperatures range from about 12,000K for
the weak Fe lines up to temperatures of 33,000K for N V absorptions, which is
in excess of temperatures expected from radiative equilibrium.
The spectroscopic hallmark of this stellar class is the presence of strong C
IV and N V resonance line absorptions at occultation phases and of redshifted
emissions at magnetic pole-on phases. The emissions have characteristics which
seem most compatible with the generation of high-energy shocks at the
wind-cloud interface, as predicted by Babel.Comment: 19 pages, Latex plus 6 figures A&A single-spaced, accepted by
Astronomy & Astrophysics. Files available by ftp at
nobel.stsci.edu/pub/aapaper