12,032 research outputs found

    Numerical study of large-eddy breakup and its effect on the drag characteristics of boundary layers

    Get PDF
    The break-up of a field of eddies by a flat-plate obstacle embedded in a boundary layer is studied using numerical solutions to the two-dimensional Navier-Stokes equations. The flow is taken to be incompressible and unsteady. The flow field is initiated from rest. A train of eddies of predetermined size and strength are swept into the computational domain upstream of the plate. The undisturbed velocity profile is given by the Blasius solution. The disturbance vorticity generated at the plate and wall, plus that introduced with the eddies, mix with the background vorticity and is transported throughout the entire flow. All quantities are scaled by the plate length, the unidsturbed free-stream velocity, and the fluid kinematic viscosity. The Reynolds number is 1000, the Blasius boundary layer thickness is 2.0, and the plate is positioned a distance of 1.0 above the wall. The computational domain is four units high and sixteen units long

    A momentum-space representation of Feynman propagator in Riemann-Cartan spacetime

    Full text link
    We first construct generalized Riemann-normal coordinates by using autoparallels, instead of geodesics, in an arbitrary Riemann-Cartan spacetime. With the aid of generalized Riemann-normal coordinates and their associated orthonormal frames, we obtain a momentum-space representation of the Feynman propagator for scalar fields, which is a direct generalization of Bunch and Parker's works to curved spacetime with torsion. We further derive the proper-time representation in nn dimensional Riemann-Cartan spacetime from the momentum-space representation. It leads us to obtain the renormalization of one-loop effective Lagrangians of free scalar fields by using dimensional regularization. When torsion tensor vanishes, our resulting momentum-space representation returns to the standard Riemannian results.Comment: 12 page

    Strong mass effect on ion beam mixing in metal bilayers

    Full text link
    Molecular dynamics simulations have been used to study the mechanism of ion beam mixing in metal bilayers. We are able to explain the ion induced low-temperature phase stability and melting behavior of bilayers using only a simple ballistic picture up to 10 keV ion energies. The atomic mass ratio of the overlayer and the substrate constituents seems to be a key quantity in understanding atomic mixing. The critical bilayer mass ratio of δ<0.33\delta < 0.33 is required for the occurrence of a thermal spike (local melting) with a lifetime of τ>0.3\tau > 0.3 ps at low-energy ion irradiation (1 keV) due to a ballistic mechanism. The existing experimental data follow the same trend as the simulated values.Comment: 4 pages, 4 figures, preprin

    Dynamical coupled-channel model of kaon-hyperon interactions

    Full text link
    The pi N --> KY and KY --> KY reactions are studied using a dynamical coupled-channel model of meson-baryon interactions at energies where the baryon resonances are strongly excited. The channels included are: pi N, K \Lambda, and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710), P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910), P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660), D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY transition potentials are derived from effective Lagrangians using a unitary transformation method. The dynamical coupled-channel equations are simplified by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N partial-wave amplitudes and a phenomenological off-shell function. Two models have been constructed. Model A is built by fixing all coupling constants and resonance parameters using SU(3) symmetry, the Particle Data Group values, and results from a constituent quark model. Model B is obtained by allowing most of the parameters to vary around the values of model A in fitting the data. Good fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been achieved. The investigated kinematics region in the center-of-mass frame goes from threshold to 2.5 GeV. The constructed models can be imbedded into associated dynamical coupled-channel studies of kaon photo- and electro-production reactions.Comment: 35 pages, 11 Figure

    The uncertainty surrounding the burden of post-acute consequences of dengue infection

    Get PDF
    Post-acute consequences currently form a significant component of the dengue disability-adjusted life year (DALY) burden estimates. However, there is considerable uncertainty regarding the incidence, duration, and severity of these symptoms. Further research is needed to more accurately estimate the health and economic burden of these dengue manifestations

    Characterization and classification of whole-grain rice based on rapid visco analyzer (RVA) pasting profile

    Get PDF
    Classification of whole grain rice using only amylose content is not practical to predict starch viscosity for end product recommendation. This study aims to characterize and categorize whole-grain rice based on pasting profile of Rapid Visco Analyzer (RVA). The rice cultivars showed a wide range of peak viscosity (89.98 to 280.95 RVU), hold viscosity (59.97 to 211.56 RVU), breakdown viscosity (-0.33 to 130.67 RVU), final viscosity (111.25 to 390.75 RVU), setback viscosity (-44.47 to 205.67 RVU) and pasting temperature (74.17 - 91.15oC). Stability ratio and final viscosity explained 68.8% of total variance in the RVA profiles. The rice cultivars could be grouped into high (> 0.95), medium (0.65-0.95) and low ( 300 RVU), medium (140 - 250 RVU) and low (< 140 RVU) final viscosity. The classification could serve as a basis for effective rice selection according to functional properties of whole grain rice

    Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China

    Get PDF
    We analyze 16-month data of 13 major halocarbons measured at a southern China coastal site in the greater Pearl River Delta (PRD). A total of 188 canister air samples were collected from August 2001 to December 2002. Overall inspection indicated that CH2Cl2, C2Cl 4, and C2HCl3 had similar temporal variations while CFC-11, CFC-12, and CFC-113 showed the same emission patterns during the sampling period. Diurnal variations of halocarbons presented different patterns during ozone episode days, mainly related to emission strength, atmospheric dispersion, and photochemical lifetimes. For further statistics and source appointment, Lagrangian backward particle release simulations were conducted to help understand the potential source regions of all samples and classify them into different categories, including local Hong Kong, inner PRD, continental China, and marine air masses. With the exception of HCFC-142b, the mixing ratios of all halocarbons in marine air were significantly lower than those in urban and regional air (p &lt; 0.01), whereas no significant difference was found between urban Hong Kong and inner PRD regional air, reflecting the dominant impact of the greater PRD regional air on the halocarbon levels. The halocarbon levels in this region were significantly influenced by anthropogenic sources, causing the halocarbon mixing ratios in South China Sea air to be higher than the corresponding background levels, as measured by global surface networks and by airborne missions such as Transport and Chemical Evolution Over the Pacific. Interspecies correlation analysis suggests that CHCl3 is mainly used as a solvent in Hong Kong but mostly as a feedstock for HCFC-22 in the inner PRD. Furthermore, CH3Cl is often used as a refrigerant and emitted from biomass/biofuel burning in the inner PRD. A positive matrix factorization receptor model was applied to the classified halocarbon samples in the greater PRD for source profiles and apportionments. Seven major sources were identified and quantified. Emissions from solvent use were the most significant source of halocarbons (71 ± 9%), while refrigeration was the second largest contributor (18 ± 2%). By further looking at samples from the inner PRD and from urban Hong Kong separately, we found that more solvent was used in the dry cleaning industry in Hong Kong, whereas the contribution of cleaning solvent in the electronic industry was higher in the inner PRD. Besides the two common sources of solvent use and refrigeration, the contributions of biomass/biofuel burning and feedstock in chemical manufacturing was remarkable in the inner PRD but negligible in Hong Kong. These findings are of help to effectively control and phase out the emissions of halocarbons in the greater PRD region of southern China Copyright 2009 by the American Geophysical Union

    Cosmological perturbations in f(T) gravity

    Full text link
    We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) ansatzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.Comment: 11 pages, 4 figures. Analysis of the vector and tensor sectors adde
    corecore