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NONENCLATURE

a,b, ..., i Coefficients use in biquadratic interpolation of stream
function

f(n) Dimensionless stream function in Blasius solution of flat-

plate boundary-layer equations

f(@) Function appearing in complementary solution for bound
vorticity

hl,h2 Horizontal spacing between nodes, Fig. B-I

kl,k2 Vertical spacing between nodes, Fig. B-I

k Unit vector perpendicular to plane of flow

Kernel functions appearing in velocity induction law,

KI'KII Eqns. (20) and (21)

%c Virtual distance of eddy center upstream of computational
domain.

L Length of eddy break-up plate, Fig. 1

r Vector radius pointing from vortex element to a point in
the flow

Re Reynolds number, U_ L/

S Elevation of eddy break-up plate above the wall, Fig. 1

t Dimesionless time, t*U_/L

iv



I_OI_NCLATgRE(continued)

t' Dummy variable of integration in Eqn. (18)

u Dimensionless fluid velocity in x-direction, u /Uoo

Uco Undisturbed free-stream velocity in x-direction

gb Velocity of undisturbed background flow given by Blasius
solution

Uslip Apparent slip velocity induced at solid surfaces by the
free vorticity,

v Dimensionless fluid velocity in y-direction, v /Uco

V Dimensionless velocity vector (u,v)

x Dimensionless coordinate measured along the wall from plate
centerline, X*/L, Fig. I

x' Streamwise coordinate measured from virtual origin of wall
boundary layer

y Dimensionless coordinate measured perpendicular to the wall
along the plate centerline, y*/L

y Dimensionless bound vorticity of the eddy break-up plate,

¥ =Y k,_( is auxiliary bound vorticity given by y sin0,

y = ¥*lu CO

6 Boundary layer thickness, equal to 2L

n Stretched y-coordinate in Blasius boundary-layer solution
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NOHENCLAYgRE(continued)

0 Polar angle on circumscribed circle about the plate,
measured from downstream edge

Kinematic viscosity of the fluid

Velocity potential of the irrotational flow

Dimensionless stream function, _ */U_ L

9' Dimensionless stream function of the perturbation flow,
Eqn. (19)

Dimensionless vorticity, _*L/U

_' Dimensionless perturbation vorticity, _ - _b

_b Dimensionless vorticity of the background flow as obtained
from Blasius solution

Superscript

Denotes dimensional quantity

Subscrivts

wall, w Denotes evaluated at the wall

plate Denotes evaluated at the plate

part Denotes particular solution

comp Denotes complementary solution
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ABSIRA_'r

The break-up of a field of eddies by a flat-plate obstacle embedded

in a boundary layer is studied using numerical solutions to the two-

dimensional Navier-Stokes equations. The flow is taken to be

incompressible and unsteady.

The flow field is initiated from rest. A train of eddies of

predetermined size and strength are swept into the computational domain

upstream of the plate. The undisturbed velocity profile is given by the

Blasius solution. The disturbance vorticity generated at the plate and

wall, plus that introduced with the eddies, mix with the background

vorticity and is transported throughout the entire flow.

All quantities are scaled by the plate length, the undisturbed

free-stream velocity, and the fluid kinematic viscosity. The Reynolds

number is I000, the Blasius boundary layer thickness is 2.0, and the plate

is positioned a distance of 1.0 above the wall. The computational domain

is four units high and sixteen units long.

A hybrid solution method is used for the velocity field. The

velocity induction law is used to determine boundary velocities along the

solid surfaces and on the perimeter of the computational domain. Nonzero

tangential velocities at solid surfaces are cancelled by the proper amount

of vorticity production. The velocity field inside the domain is computed

from the streamfunction.

vii



Results are presented over the range of time 0 to 14.61. Vorticity

contour plots are used to visualize the eddy break-up. Marker particles

are also used to help visualize the overall flow. A plot of total drag

variation with time is also give_

Results show that the eddies are broken up by the plate. The

strong wake generated by the plate prevents the eddy vorticity from

penetrating the region between the plate and wall as the eddies are swept

downstream. Transverse velocities evident ahead of the plate are absent

behind the plate. Thus, it appears that high speed outer fluid is

prevented by the plate from being entrained into the fluid layer near the

wall. This has been proposed to be one of the mechanisms by which break-up

devices can reduce drag locally. The numerical predictions support this

proposal.
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Io INTRODUCTION

Interest in reducing the drag of aerodynamic surfaces has led to a

new examination of the fundamental transport processes occuring in

turbulent boundary layers. It has been hypothesized that the

proper management of the large scale turbulence can affect wall variables

such as skin friction. Of particular interest are the large eddy-like

structures which are believed to entrain the high speed outer potential

flow into the boundary, thereby causing momentarily high velocities to

occur near the wall. These higher velocities in turn lead to locally high

values of the skin friction.

Whereas there is not as yet universal acceptance of the concept

that large-scale structures are associated with high skin friction, recent

important experiments by Nagib and co-workers at the Illinois Institute of

Technology lend strong support to this concept. Corke, Nagib, and

Guezennec [I] have found that the outer scales, defined by the intermittent

excursions of potential fluid into the boundary layer, can be suppressed by

simple arrangements of parallel plates. This results in a decrease in the

streamwise growth of the boundary-layer thickness (also the momentum

thickness), leading to a decrease in the local wall shear stress. They

report a 30% decrease in local skin-friction coefficient. When account is

made of the viscous drag of the plates, the overall drag reduction is 20%.

The authors of Ref. i speculate that the large outer scales are

remnants of the laminar-turbulent transition process. These are slowly

decaying structures that are embedded in the boundary layer. The plates
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mechnically suppress potential fluid entrainment and thus hasten the

Reynolds number aging of the boundary layer. The result is a reduced

growth rate of the boundary-layer thickness with downstream distance.

The essentially two-dimensional dynamical interpretation given by

Corke et al. may be an oversimplification of a much more complicated three-

dimensional flow. However, the basic concept appears to be sound. Four

mechanisms, by which the plates act to suppress the outer scales, have been

given by the authors. These can be summarized as follows: I) restriction

of the vertical velocity components in the boundary layer, 2) generation

by the plate of unsteady circulation opposite to that of the large-scale

motions, 3) generation of a small-scale vortex street behind the plate,

and a redistribution of small-scale turbulence, and 4) small-scale

turbulence production due to the wake of the plates embedded in a much

thicker wall boundary layer. These above-mentioned mechanisms are not all

independent, and when account is taken of the unsteady nature of the flow

and the many scales of turbulence present, it is difficult to identify

which ones are dominant.

The present study was undertaken in order to identify the basic

dynamical processes which occur when eddy-like structures interact with a

flat plate embedded in a boundary layer. The approach is numerical rather

than experimental and is based on solutions to the unsteady two-dimensional

Navier-Stokes equations for incompressible flow. The intent is not to

simulate a fully turbulent flow by numerical means, nor is any turbulence

modeling incorporated into the analysis. Rather, an analysis is made of a



flow which has several g_oss features in common with the boundary-layer

flow studied experimentally in [I].

The eddy-like structures are taken to be regions of constant

vorticity which are initially circular in shape. They distort in the shear

flow as they are convected towards a single flat-plate manipulator

positioned parallel to a wall of large extent. A sequence or train of

eddies is introduced computationally ahead of the plate. The eddies have

varying strengths and length scales, the latter being on the order of the

boundary-layer thickness, 6. These length scales are comparable to those

found in the experiments of [I].

The eddies are superimposed onto an otherwise steady background

flow which is laminar. In this way, a flow is produced which is close to

that in a laminar boundary layer undergoing transition. Thus, it is not as

developed as that produced experimentally in [I]. Also, the Reynolds

number based on the boundary-layer thickness is 2000, which is

approximately 1600 when based on the momentum boundary-layer thickness.

This latter quantity ranged from about 2200 to 5000 in the experiments of

[I]. Therefore, this parameter for the present study is close to the low

end of the range studied in the experiments.

4



II. BA._ISOF THEORETICAL APPROACH

The basic approach is the same as that incorporated by Schmall and

Kinney [2]. However, rather than the flat plate being positioned in a

uniform onset flow, in this work it is imbedded in an unsteady viscous flow

adjacent to a plane surface. This necessitates the introduction of image

vorticity in order to satisfy boundary conditions. As in [2], the plate is

replaced by a distribution of bound vorticity, and the vorticity production

at solid surfaces (plate plus lower bounding wall) is calculated directly.

The velocity field is calculated using a hybrid scheme which

incorporates the stream function and velocity induction law. The velocity

induction law is used to obtain the effect of the bound vorticity of the

plate on the main flow, as well as the tangential velocity induced at solid

surfaces. This latter quantity is needed in the determination of the

vorticity production. The rotational velocity of the main flow is computed

from the stream function, as obtained from the numerical solution of

Poisson's equation.

The analytical development is given in the next section. The

working equations are presented, and the numerical formulation is

discussed. Lengthy developments are given in the various appendices.

5



III. ANALYSIS

A schematic of the flow configuration is shown in Fig. I. The

characteristic length scale for the flow is taken to be the plate

length, L. We have selected S = L and 8 = 2L. The background velocity

profile is denoted by Ub(Y). This is taken to be the Blasius profile for

laminar flow on a flat plate with zero pressure gradient.

Strictly speaking, _ and Ub are functions of x. However,

over the region of interest, their streamwise variation is very small.

This can be seen if the characteristic Reynolds number is introduced as

Re = U L/9 where a value of i000 has been chosen for this study.

Let x' be the streamwise distance measured from the virtual origin

of the boundary layer on the wall. One has for a Blasius profile that

_/x' _ 6/(U_/_) I/2. Then _/L --6[(x'/L)/(U_L/_]I/2 . Upon substitution

of _/L = 2 and U L/_ = i000, one obtains x'/L = IIi. Therefore, the

virtual origin of the boundary layer is more than 100 plate-lengths

upstream of the plate. As will be discussed more fully later, the domain

of interest spans a region which is 16 plate-lengths in the flow direction.

Over this distance, the boundary layer grows only 7%. This is a low order

effect, and therefore the variation of _ and Ub in the streamwise

direction has been neglected entirely.

The other quantities of interest are the vorticity of the

background flow and the relative distance y/L, where y is

measured from the wall. One begins with the boundary-layer approxi-

mation _b = -_Ub/_y, where now Ub is considered to be a function of n ,



and n = (Y ix')(Ux'/_) I/2. Recall that Ub = Uo= f'(n), where f'(_)

is the derivative of the dimensionless stream function. Clearly,

-112
_b---U=f"(n) _n/_Y, from which _bLIU= = -f"(n) [(x'/L)/(U=L/_)] is the

dimensionless background vorticity. From the foregoing expression for

_/L, one has [(x'/L)/(U L/_)]I/2 = 1/3. Therefore, _DL/U=
_3 f"(n).

one can also show that n = (Y /L) [x'/L) (U= L/W)]-I/2 , from which

y/L = n/3. When N = 6, then y = _ and 6/L = 2 as required.

To summarize, then, we have

Ub = U=f' (n) (i)

_bL/U = -3 f"(n) (2)

y/L = n/3 (3)

The values of n, f'(N), and f"(N) are given in tabular form in Ref [3],

Page 139. In practice, it is the value of y/L which is specified in the

calculations. From this, n is obtained from (3), and the values of f'(n)

and f"(n) are obtained by interpolation.

Governing Equations

Superimposed onto the background flow are perturbation velocity and

vorticity fields caused by the presence of the plate, as well as the

coherent eddy structures introduced ahead of the plate. We denote as u'

and v' the x- and y-components of perturbation velocity, and m' denotes the

perturbation vorticity field. Then



u = Ub(Y) + u'(x,y,t) (4)

v = v'(x,y,t) (5)

= _h(y) + _'(x,y,t) (6)

No assumption is made that these perturbation quantities are small.

The vorti¢ity transport equation is given by

+ I + (7)
_--_ _x (u_0)+ _y (v_) = R-_ \_y2 _x2/

and the continuity equation is

_u _v
+ 0 (8)

At this point, all independent and dependent variables have been rendered

nondimensional using Do_ L, and v. That is, t = t*_/L, u = u*/Um, y =

y*/L, m = m'L/U, etc. The asterisk denotes a dimensional variable, which

will normally be omitted for convenience. The origin of the x and y

coordinates is as shown in Fig. I.

Note that Eqn. (7) allows the background vorticity, _, to be

transported by convection and diffusion in the lateral direction only,

since it does not depend on x. Therefore, there is a mechanism by which _Qb

can change with time. Nevertheless, the effect is small and is of no real

importance. Therefore, it has been neglected here.

The velocity field is obtained from a hybrid formulation in terms

of the stream function and/or the velocity induction law, referred to here



as the Biot-Savart law. The general form for the x-component can be

written as

i iI _0 (y-yp)+ __
U(Xp,ypt) = _ (X_Xp)2 (y_yp)2 dx dy + i.grad _ (9)

where P is some point in the flow, and the range of integration is over

the region of non-zero vorticity. Note that this expression contains

i-grad i, which must be included for generality. More will be said about

this term later. The expression for the y-component of velocity is

i r_ e(x-x)
P dx dy + j-grad i (I0)

V(Xp,yp,t) - 2_ Jj (X_Xp)2 + (y_yp)2

It is easily verified that curl V = k _ , where the curl operator is with
P

respect to the coordinate at P.

The term grad _ is a purely irrotational contribution to the

velocity field and must be included to insure that boundary conditions are

satisfied. The principal velocity boundary conditions embody the adherence

condition at solid surfaces. These are enforced in two steps. First, the

normal velocity component is nullified, after which the tangential

component is reduced to zero. The first step is accomplished through image

vorticity plus the proper specification of grad !. The second step is

accomplished through the proper production of vorticity at the solid

surfaces.

We require that v vanish on the solid wall and plate. The wall is

taken to be a plane of anti-symmetry such that below it we have vorticity

which is opposite in sign to that above the wall. This concept of image



vorticity provides a straightforward means for determining grad _ in (9)

and (i0).

Any irrotational velocity field which produces zero normal velocity

at the plate and wall will satisfy the requirements for grad_ . Therefore,

we replace the plate by a distribution of bound vorticity, y , along its

length. A distribution of fluid sources would do as well, but the

vorticity distribution better satisfies our needs. Therefore, we make the

following substitution.

112 __ ___

1 I yxrgrad _ = _ 2 dx (ii)
-1/2 r

where r is the vector from y to the point P, and dx is the incremental

plate length over which y is distributed. Also, _ = k y.

To produce the proper anti-symmetry about the wall, we replace

and y in the lower half plane (y' < 0) by their images. Therefore, we

have

+oo +co

u (Xp,yp,t) = -_ (.a + (y+yp)2]0 -_ (X-Xp)2 + (y_yp) 2 + (X-Xp)2 dx dy

+i /2 s+y

1 i [ s-yp + (X_Xp)2 p ]
+ 2 )2

-1/2 (X-Xp) + (S-Yp + (S+YP)2 dx(12)

+_ -I-=o
X--X X--X

v(X,yp,t)= 1 I I _0[ _y_yp)2 - (X_Xp)2 p ]dxdyp - 2-_ (X-Xp)2 + + (y+yp)20 --oo

+1/2

1 I [ x-x -yp) 2 x-x 2]

27 Y 2 P P dx

-1/2 (X-Xp) + (S (X-Xp) 2 +(S+Yp)
(13)

i0



To obtain (12) and (13), one replaces _with-_ and y with -y in

the lower half plane. The range of integration on y is then changed to

include only the positive half-plane y > 0.m

It is clear from (13) that v = 0 whenever Y = 0. That is, theP

wall is a streamline. Note, however, that u # 0 when yp = 0 , and there

is an apparent slip velocity on the wall (there is also one on the plate).

This must be reduced to zero by the proper production of free vorticity at

the wall and plate. This process will be discussed subsequently.

The distribution for ¥ must be so constituted that no transverse

velocity exists at the plate. To obtain the governing equation for y, one

sets yp = S in (13), and sets the left-hand side to zero. There results

an integral equation for y as follows:
114)

+1/2 +oo+oo

Y -_p (XmXp)2 + 4S J (X--X)2+ (y__yp)2 +(y+y--1/2 --OO p

When it is solved, the resulting velocity field satisfies all the

requirements of the problem, except possibly the no-slip condition on the

wall and plate. As mentioned earlier, this must be reduced to zero in the

calculation of the free vorticity from (7).

For the evaluation of the apparent slip velocities at solid

surfaces, one uses (12). It is expedient to introduce _ = _b(y) +

_'(x,y,t) into (12) and to note that the integration of _b(y) over the

infinite domain produces only the background velocity, Ub(Yp). Therefore,

we add Ub(Y p) to the right-hand side of (12) and replace e by e'. Next,

ii



We set yp = 0 and evaluate U(Xp,0,t). Let us call this (Uslip) wall "

Thus,

foo too
1 2y

(U slip ) wall = 2-_ | [ _' 2 2 dx dy
J0 -_J (X-Xp) + (y-yp)

(15)
1/2

+ _ 7 dx
-1/2 (X-Xp) + (S-Yp)

The evaluation of the slip velocity on the plate is slightly more involved.

First, set yp =S + in (12), where S + is a small distance g above the

plate• The integration of _ is straightforward. The integration of

the first term involving Y must be done carefully, since y = S, and thus

S - yp -_. As _ . 0 we obtain -y/2 for this integral When

yp S we obtain +T/2 for this integral. Thus there is a different

apparent slip velocity on the upper and lower surfaces of the plate• The

end result is

+co +oo

(U )+ = Ub(s) + I I rslip plate _ j _' Kl(X,y,Xp,yp) dx dy
0 _0o

(16)

+1/2

1 Y _;_ I 2S ]
- (Xp) + _ y(x) F dx

-1/2 _X-Xp )2 + 4S2

- +

(Uslip)plate = (Uslip)plate + y(Xp) (17)

where KI is the quantity in brackets in (12).

12



Once the slip velocities are determined for the wall and plate

surfaces, the vorticity production is given by

t+At

\_y / surface slip surface
t

This follows the scheme used by Schmall and Kinney [2]. The convention is

to evaluate the right-hand side of (18) at time t. Also, a positive slip

velocity on the upper portion of a surface produces negative free

vorticity, whereas the reverse is true on the lower portion of a surface.

Equation (18) is the essential surface boundary condition needed in

the solution of (7). The manner in which it is implemented is discussed in

the next section.

As mentioned earlier, a hybrid formulation was finally used for the

calculation of the velocity field at interior points of the flow. This

involved the use of the stream function for a part of the evaluations, as

is now explained.

The integral involving 0_, or equivalently _', in (12) can be cast

in terms of the stream function. All that is required is that this

integral give a rotational velocity field which has the correct amount of

vorticity at each fluid point and which satisfies the boundary conditions.

That is, we can replace this integral with Ub(Yp) + _'/_y, where _' is

the perturbation stream function which satisfies the Poisson equation

_2_
! _2.

+ _ = -_o' (19)o 2
_x_" _y

13



It turns out that the evaluation of _'/_y is computationally more

efficient than the evaluation of the integral involving _' in (12), when

the domain of integration is large. It remains to ensure that the proper

boundary conditions are specified for 4' or its derivatives.

We first write

+oo +_

= _ _' Kl(X,y,Xp,y p) dx dy (20)
0 _co
+co +=

_x = _ a_' Kii(.x,y,x. ,yp) dx dy (21)P

where KI and KII are the quantitites in brackets in (12) and (13),

respectively.

For a given m', (20) or (21) give the value of the normal

derivatives of _' at points on the boundary of the domain, inside of which

_@' is defined by (19). That is, if yp is set to the value 4.0, then (20)

gives the value of _'/_y, at points x along the top (horizontal) boundary
P

of the domain. Similarly, for fixed X p, (21) gives the value of _'/_x at

points y along the side (vertical) boundaries of the domain. On the wall,
P

we set _' = 0, since this must be a streamline.

The boundary condition along the wall is of the Dirichlet type,

whereas those along the sides and top are of the Neumann type. It is known

that the solution to (19), subject to these boundary conditions, is unique.

Before turning to the numerical formulation, a few comments

concerning the evaluation of yare in order. Recall that the integral

equation for y is given by (14). The vorticity field, _', is known. The

14



solution for y induces a purely potential (i.e., irrotational) velocity

field, which corresponds to that produced by a flat plate in ground effect.

In this case, the velocity induced at the plate by _' is simply a given

input quantity equivalent to an outer onset-flow velocity.

As S + ==, the solution for ¥ must approach that for a single

plate in unconfined flow. It is equivalent to that given in classical

aerodynamics and used by Schmall and Kinney [2]. Therefore, the general

form is already known from classical theory.

The essential point to keep in mind here is that the solution for

¥ is non-unique and must contain a term corresponding to pure circulatory

flow about the plate. For a single plate, this term is A/sin 8. Here A

is a constant and 8 is a polar angle obtained by circumscribing a circle

about the plate so that the plate is coincident with a diameter. The angle

@ is measured from the plate in the counterclockwise direction. For a

plate in ground effect (i.e., there are two plates when the image is

introduced), the solution corresponding to the pure circulatory flow is of

the form A f(9)/sin8. Clearly, f(_) . i as S . % Unfortunately,

f (e) is not given in terms of elementary functions. However, it is easily

determined numerically. It is found by solving the integral equation for

Y when the non-homogeneous term is omitted. The non-homogeneous term

corresponds to the velocity induced by _,. The resulting solution for ¥

to the homogeneous equation is called the complementary solution.

The unknown constant A is determined from the principle of

conservationof totalvorticity(seeRef. [2]. Simplystated,

15



+ 1/2 _ ^

f y dx = f ¥ (0)d0 = 0 (22)

-1/2 0

where y =y /sine. Recalling that y (or_) is composed of a particular

solution to the complete (i.e. non-homogeneous) integral equation plus the

complementary solution [i.e. Y = Ypart . A f(e)], A can be determined

to be
"rr

- f Ypart (a) de

f (elde (231
0

where it is convenient to carry out the integrations in the 6-plane.

Numerical Formulation

A complete description of the computational domain is given in the

section dealing with the numerical parameters. Briefly, it is rectangular

in shape. It extends from x = -4 to x = +12, and y = 0 to y = 4. Aview

< <
of the region near the plate (-4 - x- 4) is given in Fig. 2. The plate is

< <
positioned at y = I, and it covers the range -1/2 - x - +1/2. The

background velocity field is confined to the region 0 < <- y - 2. That is,

in Fig. I is equal to 2.0.

It is assumed that m' is zero above the computational domain y > 4.

Furthermore, _' is set equal to zero ahead of the upstream boundary

(x < -4) and behind the downstream boundary (x > 12). At x = 12 we have

imposed the condition _'l_x = 0.

The grid is refined near the wall and plate in the transverse

direction, and near the leading and trailing edges of the plate in the

streamwise direction. Furthermore, the plate is dlscretized along its
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length independently of the outer-flow grid. There are 20 fluid cells in

contact with the plate, whereas there are 80 points along the plate at

which y is determined.

Solution for Bound Vorticit_. The solution for y is obtained at

80 discrete points on the surface of the plate. The polar angle e is

introduced, and the 80 points are obtained by first constructing arcs of

length Ae on the circle of unit diameter, whereAe =7/80. Points are

positioned at the centers of each arc around the circle, and these are

projected vertically downward onto the diameter, which comprises the plate.

In this way, there is a clustering of vortex points on the plate near the

leading and trailing edges.

A polar coordinate system is used in which x = .5 cos0 and

dx = -.5 sinede. The integral equation for y, Eqn. (14), is evaluated

= . The solution is actually
at each of 80 points given by Xp .5 cos 0p

A
A

determined for y (=ysine) rather than y, and _ is assumed to be

constant over an interval Ae. When this is substituted into each of the

80 integral equations, there results a system of 80 simultaneous equations
A

in 80 unknowns, ¥i"

As previously mentioned, the general solution is composed of

particular and complementary solutions. Since each is non-unique, we can

assign an arbitrary value to one of the 80 unknowns in each solution.

For convenience, we set the 80th unknown in each set to 1.0 and

solve the two sets of equations. If f(0) denotes the solution to the
A

homogeneous equations, then Ycomp = A f(8). The constant A is

determined from Eqn. (23).
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Solution for Free VorticitT. The solution of Eqn. (7) is

straightforward. We first integrate (7) with respect to space over a fluid

element AxAy. This gives

_--_ 0J dx dy = - div [i u m + j v _] dx dy

(24)

+_e div (grad m) dx dy

By the divergence theorem,
y+Ay

If fdiv [i u _ + j v _] dx dy = [(-uc0) + dy
x

x+Ax y (25)

+ I [(-V_)y + (V_)y+Ay ] dx
X

and

+AyII div (grade)dx dy = [(-_x)x + (_x) ] dyx+Ax
Y

x+Ax (26)

x

We apply the mean-value theorem, which leads to the approximation

x+_x x+Ax

Y y+Ay/2

and so forth for each of the terms in (25) and (26). If subscripts i and

j denote the variables evaluated at points in the vicinity of a fluid

cell, as shown in Fig. 3, then we can write further that

I+Azse -_ [ei+l,j - G°i,j

\_x )x+Ax dy L.5(Axi+AXi+l) ]Ayj (28)
Y

I _ dx dy _ _t [_°i,j] Axi Ayj (29)
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and so on and so forth. Note that the nodes are midway between control

faces (dashed lines). For the evaluation of the convective terms in (25),

we use an upstream weighted scheme as follows:

y+Ay

I (U_)x+Ax dy = [ui+i/2, j _i,j] Ayj (30)
Y

Note that the velocity at the right-hand cell face convects vorticity at

the upwind node.

When these expressions are assembled into (24) and each term is

divided by AxiAY j, the result is

_-_ i,j Ax. [ui-i/2,j _i-l,j ] - [ui+i/2,j mi,j]
l

+ Ay--lJ{[vi'j-i/21 _i'j-l] - [vi'j+i/2(_i,j_i_i'j]_")I+ [(Axi + Axi+ I)

i [(_i,j+l - _i,j ) (_i,j - _i,j-i )
+ _ (Ayj+ I + Ayi;) - (Ayj_ I + Ayj )]} (31)

It remains to integrate (31) with respect to time. We use the

explicit method which presumes that the right-hand side of (31) is

evaluated at time level t . Next, both sides of (31) are integrated over

time interval At . Upon rearrangement, one has
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i,j i,j l-ui+i/2'J a_i - vi'j+i/2 Ayj Re Axi+Axi+ I Axi_.I+AXi

1 1 1 + k [Axi 2At/Re+ Ay_.(Ayj+Ayj+I+ AYj_I+Ayj)]}_i+l,j . (Axi+AXi+l)]

k

+ mi-l,j| Lx At + _. ,, ,,
i - l,j+l LAyj(Ayj+ Ayj+I )

]
2 21Re

+ _k,j-i L Ayj + AtAyj (JYj_l+ Ayj) (32)

Note that the superscript k now denotes the time level.

For nodes adjacent to solid surfaces, Eqn. (32) must be modified to

account for zero normal velocity and the vorticity production. One sets

= 0 or v. = 0 , depending on whether the cell is bounded
vi,j-i/2 l, j+i/2

below or above by a solid surface. The vorticity production term replaces

the diffusion term given by

t+At x+Ax

t x Y

where either y = 0, y = S+, or y = S- . This entire term is replaced

by-(Uslip) wall Ax in the case of y = 0, and-(Uslip)+plate Ax or

(U slip - = S+ -) plate Ax in the case of y or S , respectively.

Accordingly, one sees that (32) must be modified by adding

l,j - _i,j-i) 2 At/Re Ayj(Ayj_1 + Ayj)

to the right-hand side. This zeros out the flux terms at the lower surface

of the control volume. Finally, - (Uslip)surface/AY, is added to the right-

hand side [recall that (33) must be divided by AxiAYl]. A corresponding
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modification is made for y = S', except that now +(Ulip)plate/AYI is

added.

Observe that initially k = 0 , and the vorticity is everywhere

zero. One then has the simple result that adjacent to the top of solid

boundaries,

- (Uslip)i• . = (34)
i,3 AY1

which shows that the initial slip velocity, which after all correspondsto

a vortex sheet on the surface, produces the correct amount of free

vorticity at the node i,j in time At. That is, the initial sheet vortex

of strength (Usli)i is broadened by diffusion in time At until it fills

the whole fluid cell adjacentto the solid surface. Therefore,At must be

chosen to be the diffusion time for a fluid cell of height Ay. This also

ensures the stabilityof (32), as explainedbelow.

Equation (32) will be stable for sufficiently small At such that

the coefficient of the mi,j term is positive or zero. Adjacent to the

solid boundaries, the convective velocities can be neglected, as can the

streamwisediffusion of vorticity. Then (32) will be stable provided

i ReAyj Ayj + Ayj+

This is precisely the statement that At be on the order of the time for

for vorticity to diffuse a distance A y. Far from solid surfaces, the

incremental heights A y are greater, and the fluid velocities are

important. Then At must be sufficientlysmall that the entire coefficient
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of the _ . term in (32) be positive or zero. In all cases, the stability

critereon was satisfied. It was also verified that the Ay spacing next to

solid surfaces was on the order of the diffusion distance for time At.

Solution for Stream Function and Velocity Field. As will be

explained more fully later, the solution for the perturbation free

vorticity, _', is obtained first. Therefore, the vorticity field is always

considered to be known at any given time level.

The solution for the stream function follows from Eqn. (19). For

the nodal arrangement shown in Fig. 3, one has by the circulation theorem

_i_j+l - _i,j Ax.

- _i,j Ixi Ayj = .5(Ayj + AYj+l) l

_i,j - _i_j-i bx.
_ _i,_ - _i+l,j byj- .5 + byj) l (36)•5(Axi + Axi+1 - (byj_1

_i-1, j - _i_j

+ .5(bXi_ I + AXi) Ayj

where the primes on _ and _ have been omitted for convenience.

Upon rearrangement, an equation for @i,j-i can be written as follows:

_i,j-i = B c0i,j + C _i,j + D _i,j+l+E _i+l,j + F _i-l,j (37)

where B = Ayj2 (Ayj_l + Ayj) (38)

(by. 1+Ay.) (byj l+AYj) Ayj (Ayj_l+bYj)C = I + Ayj 1-± _

(Axi+AXi+l) + + (3 9)Ax i (Ayj+Ayj +I) Axi (Axi_ l+AXj )

,Ay..+by. )

D = - _ J-± J (40)
(Ayj+Ayj+ I)
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AYj(AYj_I+AY j) (41)
E - Axi(Axi+AXi+l)

Ayj (Ayj_l+AYj ) (42)

F = - Axi(AXi_l+AXi)

The foregoing equation applies at any interior node for which the control

volume (dashed lines in Fig. 3) does not lie adjacent to a boundary. A

special form must be used for boundary nodes, since the boundary conditions

corresponding to Eqns.(20) and (21) and _ = 0 on the wall must be

satisfied. The task is to find values corresponding to _i-l,j and

_i+l,j at left- and right-hand boundaries, respectively, as well as values

corresponding to _i,j+l above the top boundary. The boundary condition at

the wall is of a different type and will be discussed subsequently.

Recall that the boundary conditions on the sides and top of the

domain are given by Eqn. (20) and (21), where the right-hand sides are

considered known. Consider first the left-hand boundary. Let (Xp,yp) be

the node (i-l,j) as shown in Fig. 3. Then

(43)
i-l,j

and the quantity v is known. Now expand _ in the Taylor series as
L

follows:

Ax + /_2_)i Ax2*i,j = *i-l,j + (_x) i-l,j [Sx 2 -l,j -_ + 0(Ax3) (44)

(2Ax) +!_2)(4A_)+ 0(Ax3) (45)
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Now eliminate (_2_/3x2)i_i, j from the above to get

4_i_i - _i+l,j - 3_i-l,j + 0 (Ax2) (46)

($_)i-l,j - 2Ax

Note that we have made use of the fact that adjacent to vertical boundaries

we have uniform spacing such that Axi_ I = Axi=Axi+ I = AX. Now substitute

(43) into (46) to get

2Ax vL + 4_i,j - 4_i+i, j (47)
_i-l,j = 3

The corresponding expression on the right-hand boundary is

-2Ax vR+ 4_i_j - _i-l,j (48)
_i+l, j - 3

For the top of the boundary we use the simple first-order scheme.

This is necessary due to the solution algorithm adopted to find _i,j "

This will become apparent shortly. One obtains for the top row of nodes

_i,j+l = _i,j + uT Ay (49)

where uT is known from the right-hand side of (20) for (Xp,yp)

corresponding to the node (i, j+l).

The enforcement of the boundary condition at the wall is treated

next. It is recognized that the wall coincides with the horizontal

control-volume face between nodes i, j-i and i,j. Along this face, !i,w

must be zero. We first obtain an expression for 4. using the procedure
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adopted to derive Eqn. (34). That is, we apply the circulation theorem to

a new control volume surrounding node i,l. The height of this control

volume is .7SAy I. The node i,l is thus a distance of .5AYl, above the

wall and .25 Ay l above the lower control face. The upper horizontal

control face is a distance of .5 Ay I above node i,l. The resulting

equation differs from (36) in only minor respects. When the result is

rearranged to give _i,w one obtains

AYI+AY2 [ ),w Ax i(Axi+Axi+ I

i
+

_ AyI+AY 2 ,2

Modifications corresponding to Eqns. (47) and (48) are introduced at the

upstream and downstream boundaries. As discussed below, it is required

that _i,w be zero for all i.

The solution algorithm used to calculate _i,j is based on the

Stabilized Error Vector Propagation (SEVP) method described in Ref. [4 ].

The technique is due to Madala [5 ] and is an extension of the scheme

described by Roache [6 ].

Basically, one begins at the top of the computational domain with

j=N. Eqn. (49) is used to replace _i,j+i in (37), and expressions (47) and

(48) are used adjacent to boundaries. The result is an expression for
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_i,N-i in terms of _i-l,N '_i,N ' _i+l,N and other known quantities. If

values for the stream function along this top row of nodes are given

arbitrarily, then one can extend the solution to the next lower row of

nodes. This is done until the nodes are reached at the wall, and the

stream function there is calculated by _Q). Had the initial distribution

of _ along the top row of nodes been correctly given, then_i,W given by

(50) would be zero. The departure of_i,w from zero is a measure of the

error, and one can correct the guess for _ along the top row of nodes

according to a systematic procedure. In this way, the correct distribution

at j=N can be deduced, and the true values for the stream function over the

whole field can be calculated. This is a direct solution method which

avoids iteration.

As pointed out in [6], the method fails for large computational

grids. That is, any error introduced at some row will eventually grow

until the solution becomes meaningless. Therefore, the solution has to be

stabilized by subdividing the vertical extent of the domain into subregions

or blocks. A direct measure of the error can be obtained, and so

subdivisions proceed until the error is acceptable.

The numerical algorithm actually employed is quite complex and is

too lengthy to describe here. Details are given in Appendix A.

Having obtained the stream function, it remains to obtain the

velocity component, u = _/_y. Since _ is computed at grid points, the

usual expression given by u = (_i,j+l - _i,j )/_5(_yj + Ayj+l) gives u

which is tangential to the top of a control volume (see Fig. 3). The value
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of u desired is perpendicular to vertical control faces between node

points. Therefore, a different scheme was devised.

A biquadratic surface was used to interpolate values of _ between

nine node points. The polynomial is of the form

2 2 2 y2 ix2y2= a + b x +cy + dxy + ex + fy + g x y + h x + (51)

from which

u _/_y c + dx + 2fy + gx 2 2ix2y= = + 2hxy + (52)

The nine unknown coefficients (a, b, ..., i) are found in terms of the nine

values of _ at node points (i-l, j-l), (i,j-l), (i+l, j-l), ..., (i+l,

j+l). Then u is found from (52). For example, the value of Ui__,j at

the vertical control face between nodes (i-l,j) and (i,j) is found from

(52) with y = .5 (Ayj_I + Ayj) and x = .SAXi_ I. Unfortunately, the

coefficients c, d, f, etc. are not given by simple expressions when the

node spacing is variable, and therefore, they are not given here. However,

they are summarized in Appendix B.

Evaluation of Velo=ity Field due to Bound and Free Vortieity. The

presence of the plate in the flow field means that the domain is not simply

connected, and the flow can have a purely irrotational component. As we

have seen, this can be handled by the introduction of bound vorticity on

the plate. One must calculate the velocity field due to this bound

vorticity. The complete expression for u is given by
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1/2

_Y I S+yp= y +u(x ,yp,t) Ub(Y ) + 1 S-ypP
2 2 ]dx-1/2 [(X-Xp) 2+ (S-yp) (X-Xp) 2+(S+yp) (53)

The integral over the plate in the above expression is done numer-

ically. First, polar coordinates are introduced, as discussed earlier

(i.e. x = .5 ¢ose). The quantities Xp, yp and S(=I) are fixed. Next
A

¥ sin6 is replaced by y Over any one of the 80 intervals A6i, Yi is

assumed to be constant. For points close to a plate segment, the quantity

in brackets in (53) is integrated numerically over the segment using the

Gauss quadrature method with 20 Gauss points. For points far removed from

the segment, the quantity in brackets is approximated as being constant

over a segment. It is evaluated at the midpoint of the segment, and the

integral is this value multiplied by A6i. Following this procedure for

any fluid point (Xp, yp), one obtains a sum of 80 contributions for the 80

values of Yi" Each contribution is a value of Yi multiplied by a

geometrical coefficient, which is constant for all time. Therefore, these

80 coefficients for each fluid point were calculated once and stored.

Integrals over the field of free vorticity exist in Eqns. (14),

(15), (16), (17), and (20) and (21) for (Xp,yp) on the right, left, and top

boundaries of the computational domain. Recall that these latter

expressions are needed to find VR, vL and uT for use in (47), (48), and

(49). In all cases the basic idea is the same. Over any fluid cell, _i,j

is considered to be constant and is factored outside the integral. The

kernel functions are then integrated over cells Ax i Ayj, Since each cell
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is rectangular, it is divided into 40 vertical strips, which are centered

on the 40 Gauss points for the interval A x.. Each vertical strip isl

treated as being of infinitesimal width, and the integral over Ayj is

carried out exactly (see Ref. [7] for more details). These results are

then multiplied by the corresponding dxi , and the results are

summed according to the weighting scheme given in the Gauss quadrature

formula. This gives one geometrical coefficient for the cell AxiAYj

and a point (Xp,yp). When the cell is far from the point, that is

r_>10 (A_, Ay )I/2, then the kernel is treated as constant. The integral
.L 3

is then the kernel evaluated at the center of the cell multiplied by the

cell area.

In this way, geometrical coefficients are computed for each fluid

cell and any given point (Xp,yp). The results are calculated once and

stored for each point.

In principle, the y-component of velocity could be found from an

equation similar to Eqn. (53). It is more expedient to obtain it from the

continuity equation, once the u velocity component is found. That is,

Eqn. (8) is integrated with respect to y and then with respect to x. Thus

x+Ax

I' I Iu_x+_x,y)dy - u(x,y)dy + v(x,y)dx = 0 (54)

o o x

where the wall condition v(0)=0 has been applied. To second order, the

integrals can be approximated as follows:
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n n _x.

_ . + l =

j=l_ u(x+Axi,Yj)Ayj j=IEu(x,yj_by3 + v_ _--, yn)Axi 0 (55)

The indices i and j are as shown in Fig. 3. Upon rearrangement, one has

with different notation

n

= - Ax. j=l (ui+I/2,j - ui-i/2,j) (56)Vi,n+i/2 1

where n is the number of fluid cells above the wall in the vertical

direction. Note that (56) is not applied to fluid cells which are bounded

on the top by the plate. The transverse velocity there is already forced

to zero by the bound vorticity distributed along the plate.

A final detail has yet to be mentioned. This pertains to the

calculation of the diffusive flow of free vorticity from the top and bottom

of the plate into the surrounding fluid. This involves the application of

Eqns. (16), (17), and (18).

The apparent slip velocity is found at each of 80 points on the

plate, and yet there are only twenty fluid cells which are in contact with

fluid on either the top or bottom of the plate. _erefore, the local slip

velocity was integrated over each cell face, using Simpson's rule, in order

to get an effective slip velocity for each fluid cell. This was not

required on the wall since a local slip velocity was calculated at the

center of each cell face in contact with the wall.

Numerical Parameters. Most of the gross features of the

computatio_l grid are apparent from Fig. 2. There are 11,200 fluid cells
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in all. There are 80 cells in the vertical direction and 140 in the

streamwise direction.

The cell dimensions are first determined on the plate. There are

20 ceils which span the unit plate length. First, 20 points are located

over the unit interval according to the scheme in the 20-point Gauss

quadrature formula. Control faces of fluid cells are then located midway

between these points. This produces 20 cells with a size distribution

which is symmetrical about x = 0, and which allows the clustering of cells

near the plate leading and trailing edges. The same distribution is used

in the fluid region above and below the plate, as well as ahead of and

behind the leading and trailing edges. Outside the range -I< x < +I ,

the spacing is uniform and equal to Ax = 0.12 until x = +4.0. For
m

x > 4.0, the horizontal spacing is 0.16.

The unit length between the plate and wall has the same

distribution of cells as that over the plate. Above the plate, cell

dimensions expand in a fashion symmetrical to those below the plate, but

for five cells only (rather than the usual ten). Beyond this point, the

spacing is uniform and equal to Ay = .0517.

The maximum time step was selected to be At = .01. Recall that

this means that a fluid particle moving with the free-stream velocity will

travel one plate length in I00 time increments. Provisions were made to

reduce At, if necessary, in order to render the calculations stable. The

reduction was always 10% of the current At. The At was never smaller

than .008I.
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Model for the Large-Scale Eddies

A total of eleven different eddies was specified to enter the

upstream flow boundary over the total time interval t = I0. For t > I0,

the eddy pattern repeats itself.

A schematic of the eddy pattern is shown in Fig. 4. The initial

vorticity strengths are shown for each eddy. One can envision that this

pattern moves to the right undistorted with the free-stream velocity, U .

The computational domain is just to the right. Therefore, this pattern can

be supposed to exist for a distance of ten plate lengths upstream of the

inflow boundary, and it moves as an ensemble until the outline of an eddy

just touches the inflow boundary. After this point in time, the vorticity

of the eddy, plus the background flow, convects into the domain with the

local fluid velocity.

Since the grid is rectangular and the eddy is taken to be circular,

its shape could only be approximated. An example of this is shown for the

third eddy in Fig. 5. The eddy spans vertical layers j = 7 to j = 17.

The diameter is 0.7245, and the center is at y = .576 and % = 2.30.c

As seen in Fig. 5, horizontal grid lines intersect the circular

outline of the eddy (dashed circle), thereby defining the sector of a

circle. The difference between the areas of two sectors formed by adjacent

grid lines corresponds to the area of a horizontal strip intersecting with

the circle. A rectangle of equal area can then be formed by dividing this

latter area by the height of a strip. In this way, a stair-step outline of

the eddy is produced.
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The initial vorticity of each eddy is preassigned. The vortieity

is assumed to be uniformly distributed over its area. The vorticity

strength is chosen so that the velocity induced at the wall by a single

eddy is no more than 2% of the free stream velocity. The nondimensional

eddy strength varies from .128 to .362. To obtain the maximum perturbation

velocity due to a single eddy, one divides the eddy vorticity by 4.

The perturbation vorticity of the eddy is added to the background

vorticity at the upstream boundary. This then defines the vorticity which

enters an upstream control volume at any elevation, j. Vorticity enters

according to a certain time schedule. Because the eddies are assumed to

move toward the upstream boundary at uniform velocity O o , and this

velocity is used to nondimensionalize the time, their nondimensional

locations ahead of the upstream boundary are equivalent to delay times.

For example, suppose j = I0, and we are concerned with vorticity entering

the grid from eddy #3 (shown in Fig. 5). For j = I0, the length of the

equivalent rectangular area is 0.6865. The center of the eddy is at

9. = 2.30. Therefore, vorticity from this eddy is added to the backgroundC

vorticity at j = I0 for tI <- t <- t2 , where tI = 2.3 - 0.6865/2 and

t2 = 2.3 + 0.6865/2.

ComputationalProcedure

The calculationsstartfrom an initialstateof rest. We envision

that the flow is started impulsively with the background velocityfield.

The coherent eddies do not enter the upstream boundary until after a finite

delay time.
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The flow is initiated at t = 0+. Immediately, there is an apparent

)+
velocity slip along the plate given by (Uslip plate = (Usl_p)plate =

Ub(Y=l). These apparent slip velocities form surface boundary conditions

along the plate for the vorticity transport equation. As discussed in

connection with Eqn. (32), the vorticity in the fluid cells adjacent to the

plate is now non-zero and is given by +Ub(Y=l) depending on whether the

cell is above (minus sign) or below (plus sign) the plate. The vorticity

throughout the entire field is calculated. A small lateral diffusion of

background vorticity takes place.

Note that the vorticity obtained in this first step includes the

background plus perturbation vorticity. This will be the case for all

calculations of the vorticity field. Also, the vorticity is convected by

the total velocity (background plus perturbation).

To obtain the perturbation velocities, however, we need only the

perturbation vorticity, 0_'. This is obtained next by subtracting _b(Y)

from the vorticity field. Now the boundary value for the perturbation

stream function can be obtained from Eqns. (20) and (21), following which

_' can be calculated. One contribution to the x-component of perturbation

velocity is next obtained from _@'/_y everywhere in the field.

It remains to calculate the perturbation velocities due to the

bound vorticity, _, and the apparent slip velocities along the wall and

plate surfaces. First, _' is used to calculate the right-hand side of

Eqn. (14), after whichy (x) is obtained numerically from this integralP

equatio_ Finally, the contribution to the x-component of velocity due to
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is obtained from the second integral in (12). Recall that the first

integral has been replaced by _'/_y. Now that both contributions to the

perturbation velocity in thex-direction are known, these are added and the

y-component of perturbation velocities is calculated from the continuity

equation.

The apparent slip velocities at solid surfaces are obtained from

Eqns. (15), (16), and (17). These now form the boundary conditions for the

vorticity transport equation.

The computational cycle is now repeated. With each integration of

the vorticity transport equation, the conditions at the upstream boundary

are checked to see if eddy vorticity is ready to enter the grid. If not,

then _(y) is convected in. Otherwise, the eddy vorticity is added to

_b (y) and the total is convected in.

39



IV. RESULTS AED DISCUSSION

All computations were performed on the CDC CYBER 203 at the Langley

Research Center. The computer jobs were submitted by remote batch from the

Aerospace and Mechanical Engineering Department of the University of

Arizona. The total central processing time for the results shown was 2.64

hours.

The primary results are presented in the form of vorticity contour

plots. In addition, a sense of the flow development is provided by figures

obtained using the marker and cell technique developed by Harlow and co-

workers at the Los Alamos Scientific Laboratories (see Ref. [8]).

The plots are grouped at the end of this section and are given

after each 160 time steps, which corresponds to a dimensionless time

interval of approximately 1.30. The first plot in each series shows

contours of constant perturbation vorticity. This is the vorticity

obtained after the contribution from the Blasius velocity profile has been

substracted out. Contours are shown for the following values of

perturbation vorticity, -.05, -.i0, -.20, -.25, -.30, -.50, -I.00, + .50,

+I.00. Following each vorticity plot is the flow pattern for the same time

obtained with the marker and cell flow-visualization technique. It is

emphasized that markers and cells were used only to help visualize the flow

development after the complete flow field was obtained from the governing

equations given in Chapter III.
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The flow is started impulsively from an initial state of rest. One

can see in Figs. I and 2 that the wake formed by the plate is developing at

the same time that the vortical flow introduced at the upstream boundary

(x=-4.0) is proceeding toward the leading edge of the plate. In Fig. 3,

the eddies are just reaching the leading edge of the plate. Four eddies

seem to be visible. Secondary vorticity is also being generated on the

wall. The region close to the wall ahead of the plate contains positive

perturbation vorticity, whereas that region below the plate contains

negative perturbation vorticity. Although not shown on the figures, the

wall region behind the plate contains slightly positive perturbation

vorticity for a large extent behind the trailing edge.

The regions of positive perturbation vorticity near the wall act to

reduce the wall skin friction, since it combines with the negative

vorticity of the background flow to produce a smaller velocity gradient.

This indicates that there is an unfavorable (positive) pressure gradient at

the wall ahead of and behind the plate. Directly below the plate on the

wall there is a favorable (negative) pressure gradient. Clearly, the flow

is accelerated as it flows between the wall and plate, but it is retarded

ahead of and behind the plate. The local acceleration is caused by the

thickening boundary layer on the plate which acts to restrict the flow area

between it and the wall.

The developing wake and flow perturbation ahead of the plate is

also visible in Fig. 8A. Initially, all the flow markers were arranged

uniformly over the flow field.
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At the upstream boundary, new markers are introduced at a constant

rate. This simulates hydrogen bubbles released uniformly from a wire

placed across the flow. Because the fluid in the boundary layer (y < 2.0)

moves more slowly than the outer flow, the markers tend to bunch up near

the wall. One can also see that the particles appear to follow a wavy path

ahead of the plate. This is because they follow the rotary motion due to

the eddies.

At an intermediate time of t = 8.14 shown in Figs. II and IIA, the

eddies have merged with the boundary layers on the plate. Note that the

perturbation vorticity of the eddies and wake has traveled approximately

eight plate lengths, which is in accord with the elapsed time. The

vorticity does not appear to penetrate the region directly below the plate,

although it is prevalent below the elevation of the plate in the upstream

region. This is probably due to the fact that the positive vorticity of

the boundary layer on the underneath side of the plate is much stronger

than the eddy vorticity. Thus when they merge, they combine to give a net

positive vorticity. The vorticities of the eddies and boundary layer are

of the same negative sign above the plate.

Note also in Figs. II and IIA that there is a fine-scale eddy

pattern in the far-wake region behind the plate. Furthermore, the negative

vorticity adjacent to the wall directly below the plate has disappeared

(compare with Fig. 9). This indicates that the enhanced skin friction

there at earlier times has been reduced, as has the negative pressure

gradient. Probably more of the flow is passing over the plate rather than

between it and the wall.
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For t > 8.14, only vorticity plots are given. The overall pattern

follows that at earlier times. It is interesting that at t = 10.73 and

12.03 (Figs. 13 and 14), the vortical pattern characteristic of "cat eyes"

is swept over the leading edge of the plate with little distortion.

However, at the last time shown of t = 14.61, the pattern is completely

obscured. Clearly, the plate is acting to break up the eddies at the same

time that it is preventing them from penetrating the region close to the

wall.

It appears from these computed results that the basic mechanism

described by Corke, Nagib, and Guezennec [I] is correct. The plate

prevents the large scale eddy from penetrating the wall region below and

behind the plate. The strong wake produced by the plate blocks vertical

excursions of high speed potential fluid into the boundary layer. Thus the

vortical wake behind the plate is very straight and parallel to the wall.

The eddies so prevalent ahead of the plate do not persist behind the plate.

There does not appear to be a mechanism for their reforming into coherent

structures. They seem simply to merge with the plate boundary layers.

Before concluding this section, it is of interest to examine the

time development of the drag on the system. This was computed at each time

step from the momentum integral relationship. The contribution to the drag

from the pressure field was neglected. The vertical flow boundary on the

upstream side of the control volume used in the momentum balance was

located at x = -3.4, That on the downstream side was located at x = +11.2.

The drag force per unit of span is divided by the horizontal length of the

control volume (14.6) to get the drag coefficient plotted in Fig. 17.
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The drag coefficient is of limited quantitative value since it is

not known what would be the drag if the plate were absent. However, some

of the features do appear to be correlated with the actions of the eddies.

There are a number of sharp peaks in the drag curve. These occur

at approximately t = 1.3, 2.5, 4.2, etc. It appears that these peaks are

associated with the arrival of an eddy core at the upstream boundary of the

momentum control volume. Since the eddy pattern repeats itself for

t > I0, the peaks at t = 11.3 and 12.7 appear to be repeats of those

occurring at t = 1.3 and 2.5, although they occur at a higher level.
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V. _ AND _I_CLFDI_G REMARKS

Numerical solutions of the unsteady Navier-Stokes equations have

been used to simulate large eddy breakup by a single flat plate imbedded in

a wall boundary layer. The flow field has been treated as two-dimensional

and incompressible.

The plate length has been taken to be one-half the boundary-layer

thickness. The Reynolds number based on plate length was held fixed at

I000, giving a Reynolds number based on boundary-layer thickness of 2000.

The numerical simulation is essentially that of a laminar boundary

layer undergoing transition to a turbulent boundary layer. Vorticity

perturbations in the form of coherent eddies are swept into the

computational domain. All of the eddies interact with one another and the

background flow in a fully nonlinear fashion.

The eddy structures are altered by the plate imbedded in the

boundary layer. The strong vorticity layers produced by the plate merge

with the vorticity of the eddies, and the resultant wake persists for a

long distance behind the plate. The coherent structures so evident ahead

of the plate are nonexistent behind the plate. The straight appearance of

the wake region reveals that there are nostrong transverse velocities

behind the plate. This is not the case ahead of the plate. Therefore, the

plate effectively straightens the slow behind it, and high speed fluid

above the plate does not penetrate the region close to the wall.
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It is concluded that the plate does suppress the lateral mixing of

the fluid in the boundary layer. This is consistent with the explanation

given by Corke, Nagib, and Guezennec [I] for one of the mechanisms

contributing to the drag reduction revealed by their experimental

measurements. Although their measurements were made in a more highly

developed turbulent flow than that simulated here, the fundamental

conclusion is the same.

The present numerical simulation leaves unanswered the question of

whether or not the plate actually reduces the total drag. To partially

answer that question, one would need to perform a companion calculation

with the same flow parameters, but with the plate absent. A comparison of

the resulting drag curves would then show if the presence of the plate

actually reduces drag.

Whereas the above-mentioned comparison would be of interest, it is

beyond the scope of the current study. Also, the outcome would not be

totally conclusive since many features of a turbulent flow are absent in

the current simulation. The most important of these is the three-

dimensional character of the flow. The introduction of a third dimension

would allow the vorticity to change due to the stretching of vortex lines.

That is, vorticity could increase locally. In the current calculations,

vorticity only decreases due to the mechanism of diffusion. Local regions

of enhanced vorticity cannot occur, and thus one mechanism for lateral

mixing is completely absent.
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APPENDIX A

SOLUTION ALGORITHM FOR THE STREAM FUNCTION

The algorithm is based on the Stabilized Error Vector Propagation

method, as described briefly in Section III and Ref. [4]. The method is

based on the observation that if the stream function is known on two

adjacent rows, then it can be advanced to the next row. In this way, the

solution can eventually be advanced to all the rows in the computational

domain.

The governing equations for _ are given by Eqns. (34), (44), (45),

(46), and (47). We assume that

_i,j = "@i,j + Ei,j
(A-l)

/%

where _i,j is the exact value, and gl,j is an error term. Eqn. (A-l) is

substituted into (37), (47), (48), and (49). The result is a set of

algebraic equations for Ei,j For purposes of illustration, we assume a

uniform grid with Ax.l= Ayj. Then one has

- £. (A-2)
_i,j-! = 4ei,j - _i+l,j - Ei-l,j l,j+l

for i _ I, 141 and j # 80. For the nodes adjacent to boundaries, we

have to make the following replacements,
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4Ei,j - Si+l,j (A-3)Ei_l, j =
3

4E

gi+l,j = i,j - gi-l,j (A-4)3

_. = €. (A-5)
l,j+l l,j

Notice that the exact boundary conditions are enforced on the sides and top

of the grid.

The main task is to trace the propagation of errors introduced at

the top of the grid to the bottom of the grid, where a final boundary

condition can be enforced. For example, consider the calculation

illustrated in Table I.

TableI. Illustrationof ErrorPropagation.

j__ i 2 3 4 5 6 7

80 0 0 I 0 0 0 0

79 0 -I 3 -i 0 0 0

78 2/3 -7 13 -7 1 0 0

77 52/9 -122/3 63 -41 II -I 0

76 1130/27 -2020/9 962/3 -231 85 -15 I

A unit error introduced at i = 3, j = 80 propagates through the grid as

shown. At j = 76, the error is already quite large.
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Note that the error at any j is directly proportional to the error

introduced at i = 3, j = 80. Let us first focus our attention on the error

coefficient at i = I, j = 76. In this case let us call it a13 = 1130/27.

The first subscript denotes the column in which the error coefficient

occurs, and the second denotes the column in which the unit error is

introduced. If an error e is introduced at i = 3 and j = 80, then the
3

error at i = I, j = 76 is a13 e3.

Now observe that if the unit error had been introduced at i = 2,

rather than i = 3, a different number would have occurred in the first

column (i --I) at j = 76. Call this the error coefficient, a12. Likewise,

we could generate different coefficients ali in the first column at j =76

for each unit error introduced at column i. The total error at node i = I,

j = 76 is thus

EI,76 =allei + al2e 2 + a13e3 + ... (A-6)

where only a13 has actually been computed in this example.

To obtain the error at j = 76 and i = 2, we need to generate

coefficients a21, a22 , a23, etc. In this example, we have obtained only

a23 = -2020/9, but one would have in analogy to (A-6)

E2,76= a21 el + a22 e2 + a23 e3 + ... (A-7)

and in general, one can write

En,76 = anI el + an2 e2 + an3 e3 + ... (A-8)

68



Thus we see that the ani'S form the error coefficients of an error

propagation matrix. The complete error vector at Row 76 is just

[E76] = [A] [el (A-9)

If we had wanted the error at Row 77, then we would have obtained a

different error propagation matrix, [A].

The point to (A-9) is that we can relate the error introduced at

one row to the error at any other row. For example, we guess the value of

the stream function along the top row j = 80. For this study, it is

assigned the arbitrary value of zero. The stream function is calculated by

means of Eqns. (37), (47), (48). (49) until we reach the row along the

wall, for which _i,w is given by (50). Now this row of values should all

be zero, according to the boundary condition required at the wall.

However, it won't be zero because an incorrect guess was made for _i,80.

In fact, the values of @i,w comprise the final error vector at the wall.

Call this [Ew]. We then have by (A-9)

[Ew] = [A] [e] (A-10)

[Ew] and [el are vectors with 140 elements. [A] is a square matrix. Since

[Ew] and [A] are known, we solved for [el to get

[e] = [A]-I[E ] (A-If)w
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Thus we have the error vector along the first row of nodes. This can be

used to correct the values of _it80, which were initially guessed to be

zero. Once the exact values of @ij80 are known, the true solution for the

stream function can be recalculated throughout the whole domain.

Thus there are two passes through the calculations, once the error

coefficient matrix, [A], is generated. The first pass produces the error

vector at the wall, and the second pass produces the stream function.

Therefore it is a direct solution method. The advantages of this method

are twofold. It is fast because it is noniterative. Also, the maximum-

error can be found. This error is the deviation from zero of the final

stream function value along the wall. Typically, the error is close to the

computational precision of the computer.

There is a major disadvantage, however. The error matrix [A] can

become so ill-conditioned that [A]-I is inaccurate, and thus the error

calculated from (A-II) is inaccurate. This happens when there are many

rows in the grid. To handle such cases, the grid has to be broken down

into blocks. This allows the error to be stabilized.

The algorithm used for the Stabilized Error Vector Propagation

(SEVP) method is illustrated here by the use of three blocks, as shown in

Fig. A-I. It can be generalized to any number of blocks. Note that

adjacent blocks overlap by two rows. The values for the stream function

are guessed on dashed lines. Boundary values for the stream function are

given on solid lines. Suppose each block is 8 rows long. We start at the

top of the first block.
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i=! i=140

j=22 ,,
j =21 - Ce_]

BLOCK I

j =15

j =14

[e3]= [Al2][el]
BLO CK 2

_[14]"[A2_]k3]_j=8 .............

j=7 [A22][e3]

BLOCK 3

i j=o [e6]=[A32][es]

Fi=. A-I Illustration of the Use of Blocks in the

S=abilized Error Vector Propagation Method
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Error propagation matrices [All], [AI2],°[A21], [A22 ], and [A32]

must first be generated. This can be done once and the results stored

for later use. We first specify 140 unit vectors on j = 21, j = 14, and

j = 7. Recall that this is done by making an entry of unity at one of the

columns i; all other entries being zero. We then calculate the errors by

Eqns. (A-2) through (A-5) at each of the j rows. This requires "boundary

values" for the errors to be specified at j = 15 and j = 8. Eqn. (A-5) is

enforced for j --21 only, since this is a true boundary for the grid.

Calculations begin in the first block, and [All] and [AI2 ]

are obtained. Clearly, [e 2] = [All] [eI ] and [e3] = [Al2][el]. Then

[eI] = [AI2]-I [e3], whereupon

[e2] : [All] [AI2 ]-I [e3] : [BI] [e3] (A-12)

We now introduce unit vectors along j : 14 and enforce values of [e2]

obtained from (A-12) along j = 15. We thus march to Rows j : 8 and j = 7

and obtain [A21] and [A22]. Once again

[e4] = [A21] [e3] = [A21] [A22 ]-I [e5] = [B2] [e5] (A-13)

Unit vectors are introduced along j = 7, and corresponding boundary values

[e4] are calculated from (A-13) and enforced along j = 8. The solution for

the error vectors is again extended into the third block to j = 0. This

gives [A32].

Error propagation matrices [All], [AI2], [A21], [A22] and [_2 ]'

and corresponding matrices [BI] and [B2] are now all known and stored once
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and for all. It remains to find an approximate solution for the stream

function. This requires two forward sweeps through each of the blocks. A

final backward (correction) sweep through the entire grid produces the

exact solution.

We start by guessing the stream function to be zero along Row

j = 21 and use the boundary condition at j = 22. We march the solution

forward to j = 15 and 14. Along j = 14, we must enforce a pseudo-

boundary condition, which we choose to be _ = 0. The departure from zero

of the calculated value of _ on j = 14 gives [e3].

Next, we obtain [eli = [AI2]-I [e3]. With this we correct the

solution for _ along j = 21, and we generate stream functions over the

first block and into the second block until we reach j = 7. We again

enforce the pseudo-boundary condition of _ = 0 here, and obtain the error

vector [e5]. From this we find [e 3] = [A22]-I [es] and [e 2] = [BI] [e3].

With these boundary values, we now correct the stream function along j = 15

and 14 in the second block and proceed to march ._ through the second and

third blocks. The process is repeated until we have swept all the blocks.

For the last block, we use the exact boundary condition of _ = 0

on j = 0 to find [e6]. Then [e5] = [A32]-I [e6] and [e4] = [B2] [es]. The

solution for _ is corrected on j = 7 and 8 and marched through the last

block to j = 0.

At this stage we have the exac______tsolution for _ over the last

block. It remains to extend the solution, along with new error vectors,

over the second and first blocks. For this we obtain a new error vector

[e5] by subtracting the exact solution for _ at j = 7 from the approximate
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solution generated at j = 7 during the forward sweep of Blocks 2 and 3.

Note that this approximate solution along j = 7 was stored with

forethought. We now recalculate [e 3] = [A22]-I [e5] and [e2] = [BI] [e3].

Then, the approximate solutions at j = 14 and 15 (again stored with

forethought) are corrected and the new exact solution for _ is marched

from j = 15 to j = 7. A new error vector [e3] is obtained by subtracting

the exact solution on j = 14 from the approximate solution stored at j = 14

from the forward sweep through Blocks i and 2. Finally, [e 1] = [_2 ]-I

[e3] , and the approximate solution on j = 21 is corrected. The boundary

condition along the top of the grid is applied to find _ along j = 22.

The final sweep from j = 22 to j = 14 completes the generation of the exact

solution.

The solution generated by this direct method is discontinuous at

block boundaries (j = 14 and 7), and it may not satisfy the exact boundary

condition of _ = 0 along j = 0. The amount of discontinuity and the

departure from _ -- 0 on j = 0 gives a measure of the maximum error.

Typically, the maximum error can be controlled to the round-off error of

the calculations. Iterations can be used to reduce errors further, but

they were not used in this present study.

In this work, fourteen blocks were used. The first ten blocks had

eight rows each, and the remainder had seven rows. The maximum error on

j = 0 was I.I x I0 -II at i = 36. Most of the errors were on the order of

10-15 along j = 0. Errors at the block boundaries were not checked.
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APPENDIX B

INTERPOLATIONMETHODFOR STREAM FUNCTION

The interpolation procedure involves a nine-point formula in

x and y. To proceed, we assume a biquadratic formula of the following

type:

= a + bx + cy + dxy + ex2 + fy2 + gx2y + hxy2 + ix2y2 (B-l)

Here, x and y denote local coordinates, with origin at Point i, as shown in

Fig. B-I.

In principle, one can find the nine unknown constants a through i

from known values of _ at nine points in the field. However, the solution

of the nine simultaneous equations would be tedious, and we do want a

closed form solution. Instead, we utilize a procedure used in finite-

element analysis.

We note that the x- and y-spacing is variable and construct

polynomials in x as follows:

(x-hi )(x-hl-h2)

Nl(x) = hl (hi+h2) (B-2)

N2(x) = - x(X-hl-h2)
hlh2 (B-3)

x (x-hI)

N3 (x) = (hl+h2)h2 (B-4)
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These expressions have the following properties:

NI(0) _ i , Nl(hI) = Nl(hl+h2) = 0

N2(hI) = i , N2(0) = N2(_hl+h2) = 0

N3(hl+h2 ) = i , N310) = N3(hl+h2 ) = 0

Next, we form identical polynomials in y, but with hI replaced by

kl, etc. The final expression for _ becomes

= [ml Nl(X) + m2 N2(x) + _3 N3(x)] NI (y)

+ [_4 Nl(X) + o05 N2(x) + o06 N3(x)] N2 (y)

+ [_7 NI(x) + o08 N2(x) + o09 N3(x)] N3 (y) (B-5)

Next, Eqn. (B-5) is expanded, and terms are collected. After extensive

algebra, one can obtain the coefficients a through i by inspection.

The results are:

a : o01 (B-6)

= - (2hl+h 2) hl+h 2 h1

b hi(hi+ h2) o01 + hlh-----_o02- h2(hl+ h2) _3 (B-7)

-(2kl+k2) kl+k 2 kI

c = kl(kl + k2) o01 + klk 2 o04 k2(kl+ k2) o07 (B-8)
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(2hl+h 2) (2kl+k 2) (hl+h2) (2kl+k 2)

d = hlkl(hl+l'12)(kl+k2) °_I - h lh2kl (kl+k 2) _2

hl(-2kl+k2 ) _ (2hl+h2) (kl+k 2)
+ (03

klh2(hl+h2 )(kl+k 2) hlklk2(hl+h2 ) _°4

(hl+h 2) (kl+k2 ) hI(kl+k 2)

+ hlh 2 klk 2 (o5 - h2klk2 (hi+h2) (o6

kl(2hl+h2) o07 _ (hl+h2)kl (08 + hlkl _o9 :

+ hlk2(hl+h2) (el+k2) hlh 2(kl+k 2) h2k2 (hl+h2) (kl+k 2) (B-9)

1 1 i

e hl{hi+h2) _i hlh2 _2 + h2(hl+h2) _3 (B-IO)

i i _4 + i
f = kl(kl+k 2) _i klk 2 k2(kl+k 2) _7 (B-f1)

-(2kl+k 2 ) 2kl+k 2 2kl+k 2

g = hlkl(hl+h2)(kl+k2 ) _i + hlh2kl(kl+k2 ) _2 - klh2(hl+h2)(kl+k2 ) _3

kl+k 2 kl+k 2 kl+k 2

+ hlklk2(hl + h2) _4 hlh2klk 2 _5 + h2klk2(hl+h2 ) _6

kI kI kI

- hlk2(hl+h2)(kl+k2) _7 + hlh2k2(kl+k2 ) _8 - h2k2(hl+h2(kl+k2 ) _9 (B-12)

-(2hl+h 2) + hl+h2 _ hI

h = hlkl(hl+h2 )(kl+k2) _i hlh2kl(kl+k2 ) _2 klh2(hl+h2 )(kl+k2) 3

2hl+h2 _4 hl+h2 _5 + hi _6

+ hlklk2(hl+h2 ) hlh2klk2 h2klk2(hl+h 2)

2hl+h 2 hl+h 2 hI

- hlk2(hl+h2)(kl+k2)_7 + hlh2k2(kl+k2) _8 - h2k2(hl+h2)(kl+k2) _9 (B-13)
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i = hlkl(hl+h2)(kl+k2) - hlh2kl(kl+k2 ) + klh2(hl+h2 )(kl+k2)

-- "1" --

hlklk 2 (.hl+h 2) hlh2klk 2 h2klk 2 (hl+h 2)

e7 _°8 (09

+ hlk2(hl+h2 )(kl+k2) - hlh2k2(kl+k2 ) + h2k2(hl+h2)(kl+k2) (B-14)

The spacings h_, h2, etc. are obtained from the nodal arrangement

shown in Fig.3; that is, h I = .5 (Axi_I + Axi) etc.
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