7,367 research outputs found

    Accuracy Assessment on Drone Measured Heights at Different Height Levels

    Get PDF
    The advancement in unmanned aerial system (UAS) technology has made it possible to attain an aerial unit, commonly known as a drone, at an affordable price with increasing precision and accuracy in positioning and photographing. While aerial photography is the most common use of a drone, many of the models available in the market are also capable of measuring height, the height of the drone above ground, or the altitude above the mean sea level. On board a drone, a barometer is used to control the flight height by detecting the atmospheric pressure change; while a GPS receiver is mainly used to determine the horizontal position of the drone. While both barometer and GPS are capable of measuring height, they are based on different algorithms. Our study goal was to assess the accuracy of height measurement by a drone, with different landing procedures and GPS settings

    Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions

    Get PDF
    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in one- and two-dimensional lattices. In our scheme, two internal atomic states represent a pseudo-spin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce non-trivial Berry phases in the spin lattice, thus opening new avenues for realizing novel topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well known spin models.Comment: 18 pages, 10 figure

    Accuracy Assessment of Land Cover Maps of Forests within an Urban and Rural Environment

    Get PDF
    Land cover maps of forests within an urban and rural environment derived from high spatial resolution multispectral data (QuickBird) and medium spatial resolution multispectral data (Landsat ETM+ and SPOJ 4) were compared to ascertain whether increased spatial resolution increases map accuracy of forests and whether map accuracy varies across land cover classification schemes. It is commonly assumed that increased spatial resolution would probably increase land cover map accuracy regardless of land cover classification methodology. This study assessed whether that assumption is correct within a rural and an urban environment. Map accuracy for modified National Land Cover Data (NLCD) 2001 Level II, Level I, and Unique (a modified NLCD 2001 Level II and Level I combination) shows that 30-m Landsat ETM-H data had the highest overall map accuracy for rural, urban, and combined rural/urban land cover maps. Analysis of user\u27s and producer\u27s accuracies shows that Landsat FTM-f data had higher levels of producer\u27s accuracy of \u3e90.0°/o for the coniferous cover type for modified NLCD 2001 Level II and Unique, excluding one instance for which SPOT 4 had a user\u27s accuracy of 98.5% for the rural coniferous cover type. Modified NLCD 2001 Level I Landsat ETM+ data had user\u27s and producer\u27s accuracies for a homogeneous forest cover type of 98.4 and 90.6%, respectively. Landsat ETM+ data also outperformed SPOT 4 and Quick8ird within an urban environment, creating the only map products with forest cover type user\u27s and producer\u27s accuracies of \u3e90.0%

    On the theory of the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase

    Get PDF
    We demonstrate that the vortex state in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase may be very different depending on the field orientation relative to the crystalline axes. We calculate numerically the upper critical field near the tricritical point taking into account the modulation of the order parameter along the magnetic field as well as the higher Landau levels. For s-wave superconductors with the anisotropy described by an elliptical Fermi surface we propose a general scheme of the analysis of the angular dependence of upper critical field at all temperatures on the basis of the exact solution for the order parameter. Our results show that the transitions (with tilting magnetic field) between different types of mixed states may be a salient feature of the FFLO phase. Moreover we discuss the reasons for the first-order phase transition into the FFLO state in the case of CeCoIn5 compound.Comment: 7 figure

    Kaluza-Klein Structure Associated With Fat Brane

    Full text link
    It is known that the imposition of orbifold boundary conditions on background scalar field can give rise to a non-trivial vacuum expectation value (VEV) along extra dimensions, which in turn generates fat branes and associated unconventional Kaluza-Klein (KK) towers of fermions. We study the structure of these KK towers in the limit of one large extra dimension and show that normalizable (bound) states of massless and massive fermions can exist at both orbifold fixed points. Closer look however indicates that orbifold boundary conditions act to suppress at least half of bound KK modes, while periodic boundary conditions tend to drive the high-lying modes to the conventional structure. By investigating the scattering of fermions on branes, we analytically compute masses and wavefunctions of KK spectra in the presence of these boundary conditions up to one-loop level. Implication of KK-number non-conservation couplings on the Coulomb potential is also examined.Comment: RevTex4, 29 pages, 7 ps figures, new references adde

    Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling

    Full text link
    We performed path integral simulations of spin evolution controlled by the Rashba spin-orbit interaction in the semiclassical regime for chaotic and regular quantum dots. The spin polarization dynamics have been found to be strikingly different from the D'yakonov-Perel' (DP) spin relaxation in bulk systems. Also an important distinction have been found between long time spin evolutions in classically chaotic and regular systems. In the former case the spin polarization relaxes to zero within relaxation time much larger than the DP relaxation, while in the latter case it evolves to a time independent residual value. The quantum mechanical analysis of the spin evolution based on the exact solution of the Schroedinger equation with Rashba SOI has confirmed the results of the classical simulations for the circular dot, which is expected to be valid in general regular systems. In contrast, the spin relaxation down to zero in chaotic dots contradicts to what have to be expected from quantum mechanics. This signals on importance at long time of the mesoscopic echo effect missed in the semiclassical simulations.Comment: 14 pages, 9 figure

    A Student Led Investigation of the Landscape Dynamics of Campus Recycling

    Get PDF
    Two senior undergraduate students within the environmental science division at Stephen F. Austin State University (SFASU) quantitatively diagnosed the environmental, ecological, and socioeconomic dynamics involved in plastic recycling. This study incorporated actively collecting recycled plastic bottles on campus to produce an enumerated analysis of recycling on campus; and to gain an understanding of the socioeconomics of recycling via an anonymous survey used to determine the recycling knowledgebase of natural resource students at SFASU. Undergraduate students, via their incorporation into a campus wide environmental site assessment of recycling plastic bottles, were able to apply their classroom knowledge to a real-world environmental concern thus making them more well-rounded and society-ready environmental scientists

    Nambu monopoles in lattice Electroweak theory

    Full text link
    We considered the lattice electroweak theory at realistic values of α\alpha and θW\theta_W and for large values of the Higgs mass. We investigated numerically the properties of topological objects that are identified with quantum Nambu monopoles. We have found that the action density near the Nambu monopole worldlines exceeds the density averaged over the lattice in the physical region of the phase diagram. Moreover, their percolation probability is found to be an order parameter for the transition between the symmetric and the broken phases. Therefore, these monopoles indeed appear as real physical objects. However, we have found that their density on the lattice increases with increasing ultraviolet cutoff. Thus we conclude, that the conventional lattice electroweak theory is not able to predict the density of Nambu monopoles. This means that the description of Nambu monopole physics based on the lattice Weinberg - Salam model with finite ultraviolet cutoff is incomplete. We expect that the correct description may be obtained only within the lattice theory that involves the description of TeV - scale physics.Comment: LATE
    • …
    corecore