171 research outputs found

    Magnetic flux in mesoscopic rings: Quantum Smoluchowski regime

    Full text link
    Magnetic flux in mesoscopic rings under the quantum Smoluchowski regime is investigated. Quantum corrections to the dissipative current are shown to form multistable steady states and can result in statistical enhancement of the magnetic flux. The relevance of quantum correction effects is supported v ia the entropic criterion. A possible application for a qutrit architecture of quantum information is proposed.Comment: 7 pages, 2 figure

    Effective-field-theory approach to persistent currents

    Full text link
    Using an effective-field-theory (nonlinear sigma model) description of interacting electrons in a disordered metal ring enclosing magnetic flux, we calculate the moments of the persistent current distribution, in terms of interacting Goldstone modes (diffusons and cooperons). At the lowest or Gaussian order we reproduce well-known results for the average current and its variance that were originally obtained using diagrammatic perturbation theory. At this level of approximation the current distribution can be shown to be strictly Gaussian. The nonlinear sigma model provides a systematic way of calculating higher-order contributions to the current moments. An explicit calculation for the average current of the first term beyond Gaussian order shows that it is small compared to the Gaussian result; an order-of-magnitude estimation indicates that the same is true for all higher-order contributions to the average current and its variance. We therefore conclude that the experimentally observed magnitude of persistent currents cannot be explained in terms of interacting diffusons and cooperons.Comment: 12 pages, no figures, final version as publishe

    Current-spin-density functional study of persistent currents in quantum rings

    Full text link
    We present a numerical study of persistent currents in quantum rings using current spin density functional theory (CSDFT). This formalism allows for a systematic study of the joint effects of both spin, interactions and impurities for realistic systems. It is illustrated that CSDFT is suitable for describing the physical effects related to Aharonov-Bohm phases by comparing energy spectra of impurity-free rings to existing exact diagonalization and experimental results. Further, we examine the effects of a symmetry-breaking impurity potential on the density and current characteristics of the system and propose that narrowing the confining potential at fixed impurity potential will suppress the persistent current in a characteristic way.Comment: 7 pages REVTeX, including 8 postscript figure

    Statistical Mechanics of Elastica on Plane as a Model of Supercoiled DNA-Origin of the MKdV hierarchy-

    Full text link
    In this article, I have investigated statistical mechanics of a non-stretched elastica in two dimensional space using path integral method. In the calculation, the MKdV hierarchy naturally appeared as the equations including the temperature fluctuation.I have classified the moduli of the closed elastica in heat bath and summed the Boltzmann weight with the thermalfluctuation over the moduli. Due to the bilinearity of the energy functional,I have obtained its exact partition function.By investigation of the system,I conjectured that an expectation value at a critical point of this system obeys the Painlev\'e equation of the first kind and its related equations extended by the KdV hierarchy.Furthermore I also commented onthe relation between the MKdV hierarchy and BRS transformationin this system.Comment: AMS-Tex Us

    Quantum-Classical Transition of the Escape Rate of a Uniaxial Spin System in an Arbitrarily Directed Field

    Full text link
    The escape rate \Gamma of the large-spin model described by the Hamiltonian H = -DS_z^2 - H_zS_z - H_xS_x is investigated with the help of the mapping onto a particle moving in a double-well potential U(x). The transition-state method yields Γ\Gamma in the moderate-damping case as a Boltzmann average of the quantum transition probabilities. We have shown that the transition from the classical to quantum regimes with lowering temperature is of the first order (d\Gamma/dT discontinuous at the transition temperature T_0) for h_x below the phase boundary line h_x=h_{xc}(h_z), where h_{x,z}\equiv H_{x,z}/(2SD), and of the second order above this line. In the unbiased case (H_z=0) the result is h_{xc}(0)=1/4, i.e., one fourth of the metastability boundary h_{xm}=1, at which the barrier disappears. In the strongly biased limit \delta\equiv 1-h_z << 1, one has h_{xc} \cong (2/3)^{3/4}(\sqrt{3}-\sqrt{2})\delta^{3/2}\cong 0.2345 \delta^{3/2}, which is about one half of the boundary value h_{xm} \cong (2\delta/3)^{3/2} \cong 0.5443 \delta^{3/2}.The latter case is relevant for experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum escape rates.Comment: 17 PR pages, 16 figures; published versio

    Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat

    Get PDF
    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Targets for high repetition rate laser facilities: Needs, challenges and perspectives

    Get PDF
    A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities

    Testing a dynamic field account of interactions between spatial attention and spatial working memory

    Get PDF
    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model’s functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay
    corecore