80 research outputs found

    Signals for Lorentz Violation in Electrodynamics

    Get PDF
    An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional properties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of light produced by galactic and extragalactic objects provide bounds of 3 x 10^{-16} on certain coefficients for Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically distant sources yields stringent constraints of 2 x 10^{-32}. All remaining coefficients in the photon sector are measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be implemented using existing technology.Comment: 23 pages REVTe

    From thermal rectifiers to thermoelectric devices

    Full text link
    We discuss thermal rectification and thermoelectric energy conversion from the perspective of nonequilibrium statistical mechanics and dynamical systems theory. After preliminary considerations on the dynamical foundations of the phenomenological Fourier law in classical and quantum mechanics, we illustrate ways to control the phononic heat flow and design thermal diodes. Finally, we consider the coupled transport of heat and charge and discuss several general mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/etaâ€Č^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+e−e^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Using an inflow turbulence generator for leading edge noise predictions

    No full text
    Inflow turbulence noise is often the dominant noise mechanism in turbomachines. It has been shown that the sound pressure level is related to the intensity and integral length scale of the turbulence. We utilise a methodology for generating turbulence with prescribed intensity and length scales within a detached eddy simulation. This is applied to a case of homogeneous isotropic turbulence impinging on a non-symmetric aerofoil at high Reynolds number (210000). The sound pressure level is estimated using Curle’s compact acoustic analogy, and compared to experimental data and analytical estimates. The intensity of the inflow turbulence is higher than expected, though it exhibits approximately homogeneous and isotropic characteristics. While the general shape of the predicted noise spectrum is correct, the magnitude differs from the experimental results by up to 17 dB. Reasons for this are elaborated, and improved predictions based on a flat plate are presented
    • 

    corecore