43 research outputs found

    Sustainable CO2 adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology

    Get PDF
    In this article, we report a new sustainable synthesis procedure for manufacturing chitosan/silica CO2 adsorbents. Chitosan is a naturally abundant material and contains amine functionality, which is essential for selective CO2 adsorptions. It is, therefore, ideally suited for manufacturing CO2 adsorbents on a large scale. By coating chitosan onto high-surface-area mesoporous silica supports, including commercial fumed silica (an economical and accessible reagent) and synthetic SBA-15 and MCF silicas, we have prepared a new family of CO2 adsorbents, which have been fully characterised with nitrogen adsorption isotherms, thermogravimetric analysis/differential scanning calorimetry, TEM, FTIR spectroscopy and Raman spectroscopy. These adsorbents have achieved a significant CO2 adsorption capacity of up to 0.98 mmol g−1 at ambient conditions (P=1 atm and T=25 °C). The materials can also be fully regenerated/recycled on demand at temperatures as low as 75 °C with a >85 % retention of the adsorption capacity after 4 cycles, which makes them promising candidates for advanced CO2 capture, storage and utilisation technology

    Exploration of nanosilver calcium alginate-based multifunctional polymer wafers for wound healing

    Get PDF
    Wound care is an integral part of effective recovery. However, its associated financial burden on national health services globally is significant enough to warrant further research and development in this field. In this study, multifunctional polymer wafers were prepared, which provide antibacterial activity, high cell viability, high swelling capacity and a thermally stable medium which can be used to facilitate the delivery of therapeutic agents. The purpose of this polymer wafer is to facilitate wound healing, by creating nanosilver particles within the polymer matrix itself via a one-pot synthesis method. This study compares the use of two synthetic agents in tandem, detailing the effects on the morphology and size of nanosilver particles. Two synthetic methods with varying parameters were tested, with one method using silver nitrate, calcium chloride and sodium alginate, whilst the other included aloe vera gel as an extra component, which serves as another reductant for nanosilver synthesis. Both methods generated thermally stable alginate matrices with high degrees of swelling capacities (400–900%) coupled with interstitially formed nanosilver of varying shapes and sizes. These matrices exhibited controlled nanosilver release rates which were able to elicit antibacterial activity against MRSA, whilst maintaining an average cell viability value of above 90%. Based on the results of this study, the multifunctional polymer wafers that were created set the standard for future polymeric devices for wound healing. These polymer wafers can then be further modified to suit specific types of wounds, thereby allowing this multifunctional polymer wafer to be applied to different wounding scenarios

    Exploration of dual ionic cross-linked alginate hydrogels via cations of varying valences towards wound healing

    Get PDF
    This study explored the synergistic effects of simultaneously using calcium and gallium cations in the cross-linking of alginate, detailing its effects on the characteristics of alginate compared to its single cation counterparts. The primary goal is to determine if there are any synergistic effects associated with the utilisation of multiple multivalent cations in polymer cross-linking and whether or not it could therefore be used in pharmaceutical applications such as wound healing. Given the fact divalent and trivalent cations have never been utilised together for cross-linking, an explanation for the mode of binding that occurs between the alginate and the cations during the cross-linking process and how it may affect the future applications of the polymer has been investigated. The calcium gallium alginate polymers were able to retain the antibacterial effects of gallium within the confines of the polymer matrix, possessing superior rheological properties, 6 times that of pure calcium and pure gallium, coupled with an improved swelling capacity that is 4 times higher than that of gallium alginate

    Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro

    Get PDF
    Antimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique “Trojan horse” mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) with a potential bioresponsive delivery mode. Two types of analysis on bacterial growth (minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)) were carried out while iron(III)-loaded polysaccharide samples were also tested for comparison. The results suggested that gallium showed an improved inhibitory activity on bacterial growth, in particular gallium(III)-loaded carboxymethyl cellulose (Ga-CMC) sample showing an inhibiting effect on growth for all three tested bacteria. At the MIC for all three bacteria, Ga-CMC showed no cytotoxicity effect on human dermal neonatal fibroblasts (HDNF). Therefore, these bioresponsive gallium(III) polysaccharide compounds show significant potential to be developed as the next-generation antibacterial agents with controlled release capability.info:eu-repo/semantics/acceptedVersio

    Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly

    Get PDF
    Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed

    Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction

    Get PDF
    Enzymatic reduction using oxidoreductases is important in commercial chemical production. This enzymatic action requires a cofactor (e.g., NADH) as a hydrogen source that is consumed during reaction and must be regenerated. We present, for the first time, an in situ NADH regeneration (NAD+ → NADH) using a heterogeneous catalyst (Pt/Al2O3) and H2 coupled with an enzymatic reduction. This regeneration system can be operated at ambient pressure where NADH yield and turnover frequency (TOF) increased with temperature (20–37 °C) and pH (4.0–9.9) delivering full selectivity to enzymatically active NADH. Cofactor regeneration by heterogeneous catalysis represents a cleaner (H+ as sole byproduct) alternative to current enzymatic and homogeneous (electro- and photo-) catalytic methods with the added benefit of facile catalyst separation. The viability of coupling cofactor regeneration with enzymatic (alcohol dehydrogenase, ADH) reaction is established in aldehyde reduction (propanal to propanol) where 100% alcohol yield was achieved. The potential of this hybrid inorganic–enzymatic system is further demonstrated in the continuous (fed-batch) conversion of propanal with catalyst (activity/selectivity) stability for up to 100 h

    Inorganic–organic hybrid nanoparticles for medical applications

    No full text
    corecore