112 research outputs found

    Silencing Mist1 gene expression is essential for recovery from acute pancreatitis

    Get PDF
    Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM), inflammation and fibrosis-events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer. © 2015 Karki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Insulin Tolerance Test under Anaesthesia to Measure Tissue-specific Insulin-stimulated Glucose Disposal.

    Get PDF
    Insulin resistance is a pathophysiological state defined by impaired responses to insulin and is a risk factor for several metabolic diseases, most notably type 2 diabetes. Insulin resistance occurs in insulin target tissues including liver, adipose and skeletal muscle. Methods such as insulin tolerance tests and hyperinsulinaemic-euglycaemic clamps permit assessment of insulin responses in specific tissues and allow the study of the progression and causes of insulin resistance. Here we detail a protocol for assessing insulin action in adipose and muscle tissues in anesthetized mice administered with insulin intravenously

    Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis.

    Get PDF
    The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold

    Contemporary multicenter outcomes of continent cutaneous ileocecocystoplasty in the adult population over a 10-year period: A Neurogenic Bladder Research Group study

    Get PDF
    AIMS: Evidence is sparse on the long-term outcomes of continent cutaneous ileocecocystoplasty (CCIC). We hypothesized that obesity, laparoscopic/robotic approach, and concomitant surgeries would affect morbidity after CCIC and aimed to evaluate the outcomes of CCIC in adults in a multicenter contemporary study. METHODS: We retrospectively reviewed the charts of adult patients from sites in the Neurogenic Bladder Research Group undergoing CCIC (2007-2017) who had at least 6 months of follow-up. We evaluated patient demographics, surgical details, 90-day complications, and follow-up surgeries. the Mann-Whitney U test was used to compare continuous variables and χ² and Fisher\u27s Exact tests were used to compare categorical variables. RESULTS: We included 114 patients with a median age of 41 years. The median postoperative length of stay was 8 days. At 3 months postoperatively, major complications occurred in 18 (15.8%), and 24 patients (21.1%) were readmitted. During a median follow-up of 40 months, 48 patients (42.1%) underwent 80 additional related surgeries. Twenty-three patients (20.2%) underwent at least one channel revision, most often due to obstruction (15, 13.2%) or incontinence (4, 3.5%). Of the channel revisions, 10 (8.8%) were major and 14 (12.3%) were minor. Eleven patients (9.6%) abandoned the catheterizable channel during the follow-up period. Obesity and laparoscopic/robotic surgical approach did not affect outcomes, though concomitant surgery was associated with a higher rate of follow-up surgeries. CONCLUSIONS: In this contemporary multicenter series evaluating CCIC, we found that the short-term major complication rate was low, but many patients require follow-up surgeries, mostly related to the catheterizable channel

    MaxDIA enables library-based and library-free data-independent acquisition proteomics

    Get PDF
    MaxDIA is a software platform for analyzing data-independent acquisition (DIA) proteomics data within the MaxQuant software environment. Using spectral libraries, MaxDIA achieves deep proteome coverage with substantially better coefficients of variation in protein quantification than other software. MaxDIA is equipped with accurate false discovery rate (FDR) estimates on both library-to-DIA match and protein levels, including when using whole-proteome predicted spectral libraries. This is the foundation of discovery DIA—hypothesis-free analysis of DIA samples without library and with reliable FDR control. MaxDIA performs three- or four-dimensional feature detection of fragment data, and scoring of matches is augmented by machine learning on the features of an identification. MaxDIA’s bootstrap DIA workflow performs multiple rounds of matching with increasing quality of recalibration and stringency of matching to the library. Combining MaxDIA with two new technologies—BoxCar acquisition and trapped ion mobility spectrometry—both lead to deep and accurate proteome quantification.publishedVersio

    Insulin signaling requires glucose to promote lipid anabolism in adipocytes

    Get PDF
    Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride–glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo. Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism

    Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance.

    Get PDF
    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance

    Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.

    Get PDF
    Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases

    Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    Get PDF
    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance
    • …
    corecore