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RESEARCH ARTICLE

Silencing Mist1 Gene Expression Is Essential
for Recovery from Acute Pancreatitis
Anju Karki, Sean E. Humphrey, Rebecca E. Steele, David A. Hess, Elizabeth
J. Taparowsky, Stephen F. Konieczny*

Department of Biological Sciences, the Purdue Center for Cancer Research, and the Bindley Bioscience
Center, Purdue University, West Lafayette, IN, 47907–2057, United States of America

* sfk@purdue.edu

Abstract
Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting

vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the

organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the

pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to

acinar-ductal metaplasia (ADM), inflammation and fibrosis—events that can transition into

the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information

concerning the broad phenotype associated with pancreatitis, little is understood regarding

specific transcriptional regulatory networks that are susceptible to AP and the role these

networks play in acinar cell and exocrine pancreas responses. In this study, we examined

the importance of the acinar-specific maturation transcription factor MIST1 to AP damage

and organ recovery. Analysis of wild-type andMist1 conditional null mice revealed that

Mist1 gene transcription and protein accumulation were dramatically reduced as acinar

cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was

primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible

Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could allevi-

ate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a

dramatic increase in organ damage followed by acinar cell death. We conclude that the tran-

sient silencing ofMist1 expression is critical for acinar cells to survive an AP episode, pro-

viding cells an opportunity to suppress their secretory function and regenerate damaged

cells. The importance of MIST1 to these events suggests that modulating key pancreas

transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis

and pancreatic cancer.

Introduction
The majority of the exocrine pancreas consists of acinar cells which are tasked with synthesiz-
ing, modifying, packaging and secreting vast quantities of pro-digestive enzymes (zymogens)
into the duodenum to maintain metabolic homeostasis for the organism [1–4]. The ability of
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acinar cells to produce high levels of appropriately packaged proteins requires the coordination
of pathways responsible for the accumulation and assembly of critical components of the secre-
tory apparatus, the establishment of proper apical-basal polarity and cell-cell communication
and the proper management of mis-folded proteins through the Unfolded Protein Response
(UPR) [3, 5–9]. Because of the high levels of potentially dangerous hydrolases synthesized by
the exocrine pancreas, the organ is prone to a number of disease states including pancreatitis
and pancreatic cancer.

Pancreatitis is a disease that targets pancreatic acinar cells, leading to organ inflammation,
fibrosis and overall tissue disruption [10]. It is commonly associated with gallstones and exces-
sive alcohol consumption which leads to cell damage through intracellular activation of zymo-
gens [11]. Importantly, pancreatitis is also a known risk factor for pancreatic ductal
adenocarcinoma (PDAC) [12–14] and a number of mouse genetic studies have shown that epi-
sodes of acute pancreatitis (AP) can serve as a driving force for KRASG12D-induced PDAC
[15–23]. Indeed, a hallmark of AP is alteration of acinar cell identity where acinar cells acquire
ductal characteristics through a process known as acinar-ductal metaplasia (ADM) [20, 21, 24,
25]. ADM is thought to represent a precursor state that can progress to PDAC under condi-
tions of oncogenic and tumor suppressor mutations [16–18, 26–30]. Despite a wealth of infor-
mation concerning the broad phenotype associated with pancreatitis, little is understood
regarding the transcriptional regulatory networks that are susceptible to AP episodes and how
these networks allow acinar cells and the exocrine organ to recover.

Key transcription factors that establish and maintain a healthy acinar cell state include
PTF1A, MIST1 (also known as BHLHA15), GATA6, and NR5A2 [3, 31–38]. PTF1A and
MIST1 are basic helix-loop-helix (bHLH) factors that have been shown to exhibit tumor sup-
pressor properties where acinar cells lacking each factor are highly susceptible to KRASG12D-
induced transformation [26, 39, 40]. Both factors play important roles in acinar differentiation
events. PTF1A is essential forMist1 gene expression and expression of most zymogen encoding
genes including Elastase, Carboxypeptidase and Amylase [32, 41–43]. Although not essential for
embryonic acinar development, MIST1 plays an essential role in the maturation of acinar cells
by regulating genes critical for apical-basal cell polarity, the assembly and clustering of secretory
granules, proper Ca2+ signaling, the expansion of the endoplasmic reticulum (ER), UPR path-
way homeostasis, cell cycle progression and regulated exocytosis [33, 44–50]. What sets MIST1
apart from PTF1A is that it exhibits a broad tissue specificity, being present in most serous
secretory cells in the body, including salivary acinar, stomach zymogenic, mammary alveolar
and immunoglobulin secreting B cells [51–57]. In all cases, MIST1 is responsible for the overall
upregulation of the protein synthesis, processing and secretory machinery, often acting as a scal-
ing factor to insure highly efficient regulated secretion for each cell type [31, 45, 52].

The importance of MIST1 to maintaining a healthy cellular state for secretory cells is also evi-
dent in a number of different cancers. Both stomach cancer and PDAC tumors have been shown
to initiate fromMist1-expressing secretory cells [26, 27, 58–60]. However, early in the transfor-
mation process, stomach zymogenic cells and pancreatic acinar cells that are undergoing meta-
plasia silenceMist1 gene expression, suggesting that inhibiting MIST1 activity is a critical step in
allowing cells to enter into a proliferative phase [26, 39, 46, 59–61]. Furthermore, sustainedMist1
expression in KrasG12D-expressing acinar cells inhibits ADM and PDAC development, again
highlighting the concept that MIST1 exhibits tumor suppressor properties [26, 39].

Because pancreatitis is a known risk factor for PDAC, and MIST1 is critical to PDAC devel-
opment, we set out to examine ifMist1 gene expression is silenced under AP conditions and to
test if sustained MIST1 activity would alleviate AP damage responses. Our studies demonstrate
that during AP damage in both mouse and human,Mist1 gene transcription and protein accu-
mulation are dramatically reduced. In mice subjected to caerulein-induced AP,Mist1 silencing
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is a transient event. As cells recover from AP damage, theMist1 locus is transcriptionally re-
activated and MIST1 protein levels are restored. Despite this re-expression, analysis of condi-
tionalMist1 knock-out (Mist1 cKO) mice revealed thatMist1-deficient pancreata responded
similarly to AP treatment as control animals, with an initial damage phase that was rapidly fol-
lowed by recovery. We next examined if sustainedMist1 expression (iMist1) in genetically
engineered mice could alleviate AP-induced damage. Surprisingly, in iMist1 animals, AP pro-
duced a dramatic phenotype of significant tissue damage followed by cell death in cells that
expressed iMist1. Despite the extreme damaged response in iMist1 pancreata, the pancreas par-
tially recovered by regenerating healthy acini from the small minority of acinar cells that failed
to activate the iMist1 transgene. We conclude that silencingMist1 expression is a critical event
for acinar cells to survive an AP episode where down regulating MIST1 activity may allow cells
to suppress their secretory function and permit a window of cell proliferation. However, to
fully re-establish a functional acinar cell capable of efficient exocytosis, theMist1 gene must be
reactivated to scale up the appropriate intracellular machinery that generates secretory vesicles,
expands the ER and establishes cell communication via gap junction signaling. The importance
of MIST1 to these events suggests that devising strategies to modulate transcriptional networks
could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.

Materials and Methods

Mouse Strains and Genotyping
Mist1CreERT/+ and LSL-Mist1myc (iMist1myc) mice have been described previously [26, 33, 58].
Mist1lox/+ mice were produced by generating aMist1 targeting vector containing loxP sites
flanking the entireMist1 coding region within exon 2 [62]. In addition, a small biotin-tag [63]
and MYC-tag were added to the N-terminus and C-terminus of the MIST1 open reading
frame, respectively. ES cell electroporation and blastocyst injections were performed by the
Purdue University Transgenic Mouse Core Facility.Mist1 conditional knock-out (Mist1 cKO)
mice (Mist1CreERT/lox) were produced by crossingMist1CreERT/+ mice toMist1lox/+ animals.
Induction of CreERT2 activity was accomplished by administrating tamoxifen (200 μl of 20
mg/ml) via oral gavage to adult mice (6–8 wk). Genotyping primer sets are listed in S1 Table.
All experiments were performed with mice on a C57BL/6 background and all animal studies
were conducted in strict compliance with the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes of Health and the Purdue University
IACUC guidelines. The protocol was approved by the IACUC Committee of Purdue University
(Approval Number 1110000037).

Acute Pancreatitis Induction
AP was induced by caerulein via intraperitoneal (i.p) injections. Adult mice (6–8 wk) were
given eight hourly i.p. injections of caerulein (Sigma-Aldrich, St. Louis, MO) for two consecu-
tive days (50 μg/kg body weight). Control mice received PBS. Mice were sacrificed and pan-
creata samples were harvested for paraffin blocks, protein and RNA at various times (6h!
8w) following the last caerulein injection (set to 0h). In some instances, mice were given BrdU
(5-bromo-2'-deoxyuridine) (200 μl of 10 mg/ml) by i.p. six hr prior to sacrificing. For all analy-
ses, 3–7 mice per time point/genotype/experimental condition were analyzed.

Histology and Immunohistochemistry
Mouse pancreata were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned
and stained using conventional histological techniques. Tissue sections (5 μm) were
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deparaffinized and retrieved using the 2100-Retriever (Electron Microscopy Sciences, Hatfield,
PA) with antigen unmasking solution (Vector Laboratories, Burlingame, CA). For IHC, sec-
tions were incubated in 3% H2O2 for 5 min to block endogenous peroxidase activity followed
by 1 hr in M.O.M. blocking reagent (Vector Laboratories, Burlingame, CA). Tissue sections
were incubated in primary antibodies for 1 hr at room temperature. Biotinylated secondary
antibodies were used at 1:200 dilution for 20 min at room temperature. IHC development was
performed using Vector reagents and DAB (diamonibenzidine) peroxidase substrate (Vector
Labs, Burlingame, CA). Secondary antibodies for immunofluorescence utilized avidin-conju-
gated Alexa Fluor 488, Alexa Fluor 594, Alexa Fluor 555, Oregon Green 488, and Alexa Avidin
Cy5.5 (Invitrogen, Camarillo, CA). Detailed information on the primary antibodies used in
this study is provided in S2 Table

Immunoblots
Pancreata samples were lysed using a Tissue Tearor Homogenizer (Biospec Products, Inc) in
ice-cold RIPA buffer supplemented with protease inhibitors, phosphatase inhibitors and
sodium orthovanadate. Protein extracts (30 μg) were resolved on 12% SDS-PAGE and trans-
ferred onto PVDF membranes (Bio Rad, Hercules, CA). Membranes were blocked overnight at
4°C in 5% non-fat dry milk prepared in Tris-buffered saline plus 0.1% Tween 20. Membranes
were incubated in primary antibodies at room temperature for 1 hr followed by three 10 min
washes and then incubated in horseradish peroxidase (HRP) conjugated secondary antibodies
at 1:5000 dilution at room temperature for 30 min. Immunoblots were visualized on X-ray
films using an enhanced chemiluminescence (ECL) kit (Thermo Scientific, Waltham, MA) and
quantified using ImageJ (normalized to the HSP90 or S6 signal) or visualized and quantified
on a ChemiDoc Touch Imaging System (Bio Rad, Hercules, CA) using the HSP90 or S6 signal
for normalization.

RNA Expression Analysis
Total cellular RNA from pancreata was isolated using the E.Z.N.A midi kit (Qiagen, Valencia,
CA). For quantitative RT-PCR analysis, reverse transcription using 1 μg RNA was performed
with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA), followed by gene amplification
using FastStart Universal SYBR Green (Roche Applied Science, Indianapolis, IN) and a Roche
LightCycler 96 thermocycler (Roche Diagnostics Corporation, Indianapolis, IN). All individual
reactions were performed in duplicate and all genes were normalized to 18S ribosomal RNA or
to the ribosomal transcript Rplp0. Quantitative RT-PCR primers are listed in S3 Table. Graph-
Pad Prism 6 (La Jolla, CA) was used to generate graphs included in this study. Statistical analy-
ses are presented as standard error of the mean. P values were determined using two-tailed
unpaired tests.

Microscopy and Image Analysis
All H&E, IHC and IF images were taken using an Olympus BX51 upright microscope and a
DP80 high resolution camera (Olympus Life Science). Images representing INSULIN+, AMY-
LASE+, MYC+, MYC-, BrdU+, BrdU-, etc. areas were quantified using ImageJ (NIH) from 12–
15 random 10x fields from� 3 sections at different pancreas depths per mouse. For each
image, individual pixels were converted to μm to establish the appropriate area in μm2. All cal-
culations were performed in GraphPad Prism 6. Statistical analyses are presented using stan-
dard error of the mean. P values were determined using two-tailed unpaired tests.
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Results

Mist1 Gene Expression Is Transiently Silenced upon Acute Pancreatitis
Damage
The MIST1 transcription factor (also known as BHLHA15) regulates key genes that are
required for acinus polarity, cell-cell junctions and the processing of zymogen granules [31, 33,
44, 56]. Loss of MIST1 function leads to deficiencies in acinar cell integrity, cell polarity, ER
expansion and regulated exocytosis [33, 48, 50, 64, 65]. Similar defects in polarity and acinar
cell properties are also hallmarks of KrasG12D-driven transformation events where acinar cells
exhibit acinar-ductal metaplasia (ADM) that progresses to pancreatic intraepithelial neoplasia
(PanIN) and pancreatic ductal adenocarcinoma (PDAC) [26, 39, 58]. PanINs and PDAC
tumors, each derived from acinar cells, lose acinar characteristics and no longer express MIST1
protein [2, 26, 27, 39, 66]. The importance of cell integrity to PDAC disease is also supported
by studies showing that damage to KrasG12D-expressing acinar cells via an episode of acute
pancreatitis (AP) accelerates PanIN formation [15, 18, 19, 21]. In all cases, acinar-derived
PanIN/PDAC epithelial cells remain MIST1 negative.

To evaluate the importance of MIST1 during acinar metaplasia, we characterizedMist1
expression during the damage and subsequent recovery phases of AP, a known driver of
PDAC tumor development [15, 18, 19, 21]. For these studies,Mist1CreERT/+ mice were used as
controls as all subsequent mouse lines contained theMist1CreERT knock-in allele [26, 58].
Standard caerulein treatment (Fig 1A) of 8 weekMist1CreERT/+ mice led to significant and
rapid damage to the exocrine acinar cells. As early as 6h post-AP, acinar lumens were dis-
tended and zymogen granules were rapidly lost (Fig 1B and S1A Fig). By 1d post-AP, signifi-
cant increases in edema and inflammatory cell infiltrates were observed, accompanied by
extensive formation of KERATIN19 (K19)+/AMYLASE (AMY)+ ADM lesions. Expression
of CLUSTERIN, a known marker of acinar cell damage [67, 68], also was greatly elevated at
6h post-AP (Fig 1B,1C and S1A,S1B Fig). Transcript and protein levels of acinar cell markers,
including Amylase (Amy), Trypsinogen (Tryp) and Carboxypeptidase (Cpa), were signifi-
cantly reduced over the 6h-2d post-AP period (Fig 1C,1D and S1B Fig). In contrast, ductal
markers (K19, SOX9) were greatly elevated, confirming the formation of extensive ADM (Fig
1B–1D, S1B Fig). Identical ADM responses were obtained with caerulein-treated wild-type
mice (data not shown). Despite significant development of ADM lesions upon AP induction,
AP metaplasia was transient as lesions resolved 4d-10d post-AP. In all cases, Clusterin, K19
and Sox9 transcript and protein levels returned to their low control states while acinar mark-
ers (Amylase, Trypsinogen, Carboxypeptidase) re-established high expression thresholds (Fig
1B–1D and S1A,S1B Fig).

The major phenotype associated with caerulein-induced AP is loss of acinar cell integrity
[22, 69–71]. Because the transcription factor MIST1 is critical for maintaining acinar cell polar-
ity and function, we examined if MIST1 protein accumulation was altered in AP mice. As
shown in Fig 2A and 2B, high levels of MIST1 protein were detected in all control acinar cells,
whereas duct and islet cells remained MIST1 negative (S2 Fig). However, in AP mice,Mist1
transcripts and protein were rapidly lost in damaged acinar cells (Fig 2A–2C). The absence of
MIST1 was observed 6h-2d post-AP during the period corresponding to the major time frame
for ADM lesion induction. Nonetheless, as mouse acinar cells recovered (4d-10d post-AP),
Mist1 transcript and protein levels greatly increased, achieving levels that were comparable to
those observed in control acinar cells. The transient change inMist1 transcripts and protein
during the AP response was also reflected in the expression profiles of known MIST1 target
genes [33, 44, 56]. Transcripts fromMIST1-induced genes Atp2c2, Copz2 and Rab3d were
reduced during the 6h-2d post-AP period while transcripts fromMIST1-repressed genes (e.g.,
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Rnd2) were up-regulated (Fig 2D). Thus, transient silencing ofMist1 influences a number of
key events associated with acinar cell integrity. These results suggest that the process of silenc-
ing and then re-expressingMist1may be critical in allowing the exocrine pancreas to properly
recover from an acute pancreatitis episode.

Fig 1. Characterization of Mist1CreERT/+ mice following acute pancreatitis. (A) Time course diagram of caerulein-induced acute pancreatitis. (B) H&E and
IF analyses ofMist1CreERT/+ pancreas samples in the absence of AP treatment (control) or post-AP for the indicated times. At early times acinar cells exhibit
elevated levels of Clusterin expression and Amylase+/K19+ ADM lesions. However, by 10d post-AP the majority of the tissue fully recovers. Arrows in the
H&E section point out recovered acini whereas arrows in the K19/AMY panels indicate ADM lesions. (d, duct) (C) Immunoblot analysis ofMist1CreERT/+

pancreata post-AP. HSP90 was used as a loading control. Relative expression levels are indicated below each panel, normalized to the corresponding
HSP90 signal. (D) RT-qPCR analysis of gene transcripts confirms the initial ADM phenotype followed by recovery at 10d post-AP. *p� 0.05; **p� 0.01;
***p� 0.001.

doi:10.1371/journal.pone.0145724.g001
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Generation and Characterization of Mist1lox/lox Mice
Previous studies reported thatMist1 null animals exhibited a pronounced AP phenotype, sug-
gesting that the absence of MIST1 sensitizes acinar cells to an AP episode [70, 72, 73]. How-
ever, because these studies could only use germ lineMist1 nulls, it was not possible to establish
if the enhanced AP phenotype was due to embryonic loss of MIST1 protein or was the result of
inducing AP in already damaged adult pancreata. Thus, to directly test if MIST1 protein is
required for acute pancreatitis recovery, we generated and characterized a conditionalMist1lox/
loxmouse line (S3 Fig).Mist1CreERT/+ mice were crossed toMist1lox/+ animals to generateMis-
t1CreERT/lox offspring where oneMist1 allele expressed CreERT2 while the otherMist1 allele,
engineered with an N-terminal BT-tag and a C-terminal MYC-tag, was flanked by LoxP sites
(S3 Fig). Treatment of 8 wkMist1CreERT/lox mice with tamoxifen (Tam) led to efficient recombi-
nation and rapid loss of MIST1 protein in 99.6% acinar cells as early as 24h post-Tam (Fig 3A–
3C). Deletion ofMist1 also led to significant changes in the expression patterns of MIST1 target
genes. As predicted, expression of Atp2c2 and Cx32 decreased while Rnd2 gene transcripts
(which are normally repressed by MIST1 protein) increased following Tam treatment (Fig 3D).
Similarly, MIST1-regulated CX32 gap junctions [33, 49] were rapidly lost upon Tam treatment
ofMist1CreERT/lox mice (Fig 3E).

Fig 2. TheMist1 gene is transcriptionally silenced during acute pancreatitis. (A) Analysis of MIST1 (arrows) inMist1CreERT/+ pancreata. Damaged
acinar cells exhibit greatly reduced MIST1 levels that recover by 10d post-AP. (B) MIST1 immunoblot analysis ofMist1CreERT/+ pancreata over the indicated
post-AP time points. HSP90 was used as a loading control. Relative expression levels are indicated below the MIST1 panel, normalized to the corresponding
HSP90 signal. (C) RT-qPCR analysis ofMist1 gene expression during AP damage and recovery. (D) RT-qPCR of MIST1 gene targets during AP. *p� 0.05;
**p� 0.01; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g002
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Mist1CreERT/lox Mice Exhibit Similar AP recovery as Mist1CreERT/+

Animals
To determine if AP-induction inMist1CreERT/lox animals produced a recovery delay when com-
pared toMist1CreERT/+mice,Mist1CreERT/lox animals were treated with Tam (to delete theMist1
coding region) (Mist1 cKO) and then induced with caerulein to generate an AP response

Fig 3. Establishing the Mist1CreERT/lox model system. (A) Schematic of Tam treatment and time course analysis forMist1CreERT/loxmice. (B) Immunoblot
demonstrating the absence of MIST1 protein in pancreata from Tam-treatedMist1CreER/lox mice. HSP90 was used as a loading control. (C) IF staining with
anti-MIST1 confirming that the vast majority of acinar cells are MIST1 negative 7d post-Tam treatment. (D) RT-qPCR analysis of MIST1 gene targets
revealing loss of MIST1 regulation post-Tam. (E) CX32 gap junctions are readily detected in pancreata from -Tam treatedMist1CreERT/loxmice but are
completely absent in +Tam samples. *p� 0.05; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g003
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(Fig 4A). As expected, control and AP-treatedMist1 cKOmice failed to express MIST1 protein
(Fig 4C). Caerulein injections inMist1 cKO animals elicited strong edema, inflammatory cell infil-
trates and extensive ADM lesions as early as 6h post-AP (Fig 4B and S4A Fig). ADMwas accom-
panied by significant increases in Clusterin, K19 and Sox9 transcript and protein levels with a
concomitant decrease inAmylase and Carboxypeptidase levels (Fig 4B–4D and S4A,S4B Fig). As
withMist1CreERT/+mice, the ADM phenotype was transient and theMist1 cKO pancreas returned
to a relatively normal status by 10d post-AP, althoughMist1 cKO acini remained defective in aci-
nar cell polarity and organization due to the absence of MIST1 protein. Surprisingly, with the
exception of sustained elevated SOX9 protein levels at 10d post-AP, there was little difference
between the AP responses forMist1CreERT/+ (Fig 1) andMist1 cKO animals (Fig 4).

The ability ofMist1 cKO pancreata to recover from an acute pancreatitis episode with the
same kinetics asMist1CreERT/+mice was surprising given previous reports showing thatMist1
null pancreata exhibited an enhanced AP response [70, 72, 73]. The main difference between
the two models is that with germlineMist1-/-mice, the pancreas is significantly disorganized
and defective by 8 wk of age [48]. In contrast,Mist1CreERT/loxmice allow us to delete theMist1
allele in adult animals and induce AP prior to the development of overt pancreas damage caused
by the absence of MIST1. Thus, to establish if short versus long-term loss of MIST1 activity dif-
ferentially influences AP responses,Mist1CreERT/lox animals were given Tam and then treated
with caerulein at 1 week post-Tam or 8 week post-Tam. As shown in Fig 4E, even in the absence
of AP,Mist1 cKO pancreata at 8 week post-Tam exhibited early signs of ADM, with large
increases in SOX9 and K19 protein levels (compare -AP 1 week versus 8 week). The increase in
ductal gene expression reflected the ADM damage response that was observed in adultMis-
t1CreERT/CreERT (Mist1 null) animals where theMist1 locus was absent in the germline. Interest-
ingly, AP episodes in 1 week versus 8 week post-Mist1 deletion did not reveal a significant
difference in how the pancreas responded to this acute damage (Fig 4E). In all cases, 1 week and
8 week post-tam treated mice still managed to recover from the bulk of AP-induced damage by
10d post-AP (data not shown). Taken together, we conclude that the absence of MIST1 protein
in adult acinar cells has little impact in allowing cells to recover from acute pancreatitis.

Preventing Mist1 Gene Silencing Significantly Alters the Acinar AP
Response
Our studies have shown thatMist1 expression is transiently silenced during the peak of AP
damage and thatMist1 re-expression is not required for the pancreas to recover from an AP
episode. Nonetheless, given the importance of MIST1 to normal acinar cell polarity and secre-
tory function [33, 46–49, 72, 74], we investigated if sustained MIST1 protein expression could
be used to limit the initial AP damage response. Previous studies have shown that formation of
ADM and PanIN lesions is significantly attenuated whenMist1 expression is maintained in the
presence of oncogenic KRASG12D [26, 39]. Therefore, we hypothesized that a similar lessening
of AP damage might be achieved by maintaining MIST1 transcriptional activity. For these
studies, we utilized a Cre-inducible LSL-Mist1myc (iMist1myc) transgenic mouse model (S5 Fig)
[33] and generatedMist1CreERT/+/iMist1myc offspring. Administering Tam toMist1CreERT/+/
iMist1myc mice induced iMist1myc transgene expression in 94.7% pancreatic acinar cells (Fig
5A–5C). Despite elevated levels of MIST1,Mist1CreERT/+/iMist1myc mice exhibited a completely
normal pancreas phenotype with no significant changes in the expression of acinar and ductal
genes (Fig 5D, data not shown) [33].

We next induced iMist1myc expression by treatingMist1CreERT/+/iMist1myc mice with Tam,
followed by PBS (control) or caerulein to initiate an AP phenotype (Fig 6A). Surprisingly,
instead of attenuating the AP response,Mist1CreERT/+/iMist1myc mice exhibited enhanced
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Fig 4. Characterization of Mist1CreERT/lox mice following acute pancreatitis. (A) Time course diagram of caerulein-induced acute pancreatitis in
Mist1CreERT/loxmice (Mist1 cKO). (B) H&E and IF analyses ofMist1 cKO pancreas samples in the absence of AP treatment (control) or post-AP for the
indicated times. Arrows indicate AMY+/K19+ ADM lesions. (C) Immunoblot analysis of protein expression fromMist1 cKO samples post-AP. Het is a control
Mist1CreERT/+ sample. HSP90 was used as a loading control. Relative expression levels are indicated below each panel, normalized to the corresponding
HSP90 signal. (D) RT-qPCR analysis of acinar and duct gene products during an AP time course study. (E) Comparison of 1 week and 8 week post-Mist1
deletion in theMist1 cKOmodel.Mist1CreERT/loxmice were treated with Tam and then analyzed for protein expression at the indicated times for -AP and +AP
groups.Mist1CreERT/CreERT (germlineMist1 null) mice were used as a reference control. Protein S6 was used as a loading control. Relative expression levels
are indicated below each panel, normalized to the corresponding S6 signal. *p� 0.05; **p� 0.01; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g004

Sustained Mist1 Expression Blocks AP Recovery

PLOS ONE | DOI:10.1371/journal.pone.0145724 December 30, 2015 10 / 24



damage as early as 6h post-AP where extensive disruption of the exocrine pancreas occurred
(Fig 6B and S6A Fig). By 2d-4d post-AP, the majority of acini structures were grossly altered
with disorganized and distended lumens, a severe absence of eosinophilic zymogens, sustained
elevated CLUSTERIN levels, and a large accumulation of infiltrating cells that included CD45-
+ immune cell populations (Fig 6B,6C and S6A–S6C Fig). During this period, the epithelial tis-
sue mass was largely replaced by VIMENTIN+ and alpha-SMOOTHMUSCLE ACTIN (SMA)
+ stromal cells (Fig 6C,6D and S6C Fig). The tissue also exhibited an increased islet density as
the normal tissue mass that occupied space between available islets decreased, leaving the
majority of the pancreas consisting of ductal, stromal and islet cells (Figs 6C and 7A). Protein
immunoblots and RT-qPCR analyses revealed a typical AP damage profile with accumulation
of CLUSTERIN protein, decreased expression of acinar gene products and increased

Fig 5. Mist1CreERT/+/LSL-Mist1myc mice (iMist1) exhibit acinar-specific Mist1myc expression upon CreERT2 activity. (A) Diagram outlining the time
course of the study. (B) Tam treatment of iMist1mice leads to rapid accumulation of nuclear MIST1myc protein exclusively in pancreatic acinar cells. (C)
Quantification of MIST1myc+ acinar cells following Tam induction. (D) RT-qPCR analysis reveals no deleterious effects on general pancreas properties from
Mist1myc induction. See DiRenzo et al. [33] for a full characterization of the iMist1model. ***p� 0.001. n.s.—not significant.

doi:10.1371/journal.pone.0145724.g005
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expression of duct gene products over the 6h-2d post-AP period (Fig 7B–7D). However, by 7d-
10d post-AP, despite reduced CLUSTERIN levels, ADMmarkers did not recover. Acinar genes
(Amy, Cpa) remained suppressed while duct genes (K19, Sox9) continued to be expressed (Fig
7B–7D). Further analysis of these animals revealed a greatly decreased AMY+ acinar cell mass.

Fig 6. Mist1myc acinar cells exhibit extensive stromal infiltrates following AP induction. (A) Time course of iMist1myc induction and AP treatment. (B)
H&E and IF analysis of iMist1myc pancreata post-AP. Arrows indicate remnants of acini structures. (C) iMist1 pancreata develop large increases in
CD45+ immune infiltrates as well as VIMENTIN and SMA expressing stromal cells. (D) Immunoblot and RT-qPCR analysis of Vimentin and Sma levels in
iMist1 samples post-AP. HSP90 was used as a loading control. Relative expression levels are indicated below the VIMENTIN panel, normalized to the
corresponding HSP90 signal. Note that values were rounded to the nearest whole number to accomodate lane widths. *p� 0.05; **p� 0.01; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g006
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Fig 7. Mist1myc acinar cells fail to recover from AP. (A) IF images and quantitative analysis of AMY and INS positive areas at 2d-7d post-AP. As a
consequence of loosing acinar cell mass, islet tissue density increases substantially. (B) RT-qPCR analysis of ADMmarkers showing that iMist1 pancreata
do not recover by 10d. (C) Immunoblots revealing sustained expression of duct markers in iMist1 samples. HSP90 was used as a loading control. Relative
expression levels are indicated below each panel, normalized to the corresponding HSP90 signal. Note that K19 values were rounded to the nearest whole
number to accomodate lane widths. (D) IF analysis showing the substantial loss of amylase expressing acinar cells and the persistence of K19+/AMY+ ADM
lesions (arrows). Note that 4d post-AP acini structures are small with very low levels of AMY. *p� 0.05; **p� 0.01; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g007
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At 2d and 4d post-AP, the vast majority of AMY+ acini co-expressed K19 in ADM structures
(Fig 7D). Similarly, MIST1+ acinar cells were greatly decreased while stromal cells became
more prominent within the exocrine tissue (Figs 6C, 7A, 7D and S6C Fig).

The inability of iMist1myc mice to recover from AP damage by 7d prompted us to examine
animals at extended times. During 7d-10d post-AP, iMist1myc pancreata were grossly reduced
in size (S7A Fig) with no evidence of normal acini structures. Instead, the tissue was composed
of loose connective tissue containing VIMENTIN+ fibroblasts, CD45+ immune cells and areas
of edema (S7A Fig). Within the remaining pancreas tissue, we observed small pockets of epi-
thelial ADM structures that exhibited elevated levels of CLUSTERIN and retained co-expres-
sion of AMY and K19 (Fig 8A and S7A and S8 Figs). However, the number of AMY+ acinar
cells greatly decreased over this time period with only small groupings of acinar cells remaining
at 7d post-AP (Fig 8B and 8C). During this time frame there was a significant increase in
cleaved CASPASE 3+/AMY+ epithelial cells, suggesting that cell death was primarily responsi-
ble for the vivid loss of acini structures (Fig 9A and S9 Fig). Over the ensuing 3–8 weeks post-
AP iMist1myc pancreata underwent a significant recovery as healthy acinar tissue began to
appear in the disrupted organs (S7B Fig). Areas of ADM were replaced with relatively normal
acini that were AMY+ and CLUSTERIN negative (Fig 8A–8C). Interestingly, lineage-tracing
revealed that the majority of the recovered acini were MIST1myc negative. This was particularly
evident in the later (3–8 wk post-AP) times. Quantification of these tissues showed that
approximately 75% of AMY+ acinar cells did not express the iMIST1myc protein (Fig 9B). The
increase in AMY+/MYC- acinar cells was exclusively due to an increase in cell proliferation of
the MYC- population. At 3w post-AP there was an 18.7-fold increase in BrdU-labelled cells
when compared to control pancreas samples. Importantly, of the regenerating cell population
>90% BrdU+ cells were MYC- (Fig 9C). At 8w post-AP pancreata also accumulated small
amounts of adipose tissue that typically associated with the periphery of the organ (Fig 8A).
However, the fat cells were always MYC-, demonstrating that they did not arise via an acinar
cell transdifferentiation event. Taken together, these results show that sustained MIST1 protein
is detrimental to AP recovery and that the iMist1myc pancreas recovers from an AP episode by
relying on the small percentage of acinar cells that failed to initially activate iMist1myc expres-
sion, allowing this population to re-enter a proliferative state and repopulate the organ. We
conclude that sustainedMist1 expression does not alleviate the initial AP damage and instead
is detrimental to maintaining a healthy acinar cell state under AP conditions.

Discussion
MIST1 is a bHLH transcription factor expressed exclusively in exocrine secretory cells, includ-
ing pancreatic acinar, salivary acinar and stomach zymogenic cells [48, 51, 53, 74, 75]. A num-
ber of studies have shown that MIST1 is critical to establishing intracellular apical-basal
polarity, appropriate secretory vesicle formation, expansion of the ER and the ability of cells to
exhibit proper regulated exocytosis of pro-digestive enzymes [33, 46–49, 56, 74]. Additionally,
MIST1 is necessary for maintaining appropriate protein synthesis and processing rates when
cells are under ER stress [45, 52]. In all cases, defects in MIST1 activity greatly impact the secre-
tory function of these organs.

The importance of the MIST1 transcriptional network also has been defined in pancreatic
and stomach cancer. In both systems, silencing ofMist1 gene expression is an early event asso-
ciated with metaplasia of stomach zymogenic and pancreatic acinar cells [26, 27, 58–60].
Indeed,Mist1 silencing is one of the first events associated with Kras-induced pancreatic ductal
adenocarcinoma (PDAC) with MIST1 negative acinar cells exhibiting early activation of EGFR
signaling and downstreamMAPK pathways [26, 27]. Similarly,Mist1-deficient acinar cells are
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highly sensitized to Kras transformation, suggesting that MIST1 plays a tumor suppressive role
in the adult pancreas [26, 39]. In support of this hypothesis, sustainedMist1 expression in the
presence of oncogenic KRASG12D dramatically prevents PanIN/PDAC development [39]. A
similar phenotype has been shown for the bHLH transcription factor PTF1A where deletion of
Ptf1a also sensitizes cells to PDAC formation [40]. Thus, bHLH factors are essential for main-
taining quiescent, healthy acinar cells. Indeed, altering the bHLH transcriptional network can
force human PDAC tumor cells to redifferentiate into functional acinar cells [76].

Fig 8. iMist1myc pancreata recover from AP damage through regeneration of a minority iMist1myc-negative acinar cell population. (A) H&E and IF
analysis of iMist1myc pancreata over the indicated post-AP time course. Arrows in the H&E images indicate acini structures that recover over the 8 week post-
AP period. Arrows in the K19/AMY stained group show ADM lesions that slowly resolve by 3–8 weeks post-AP. The majority of healthy acini present at 3w-
8w post-AP are MIST1myc negative (brackets and asterisks). (B) IF analysis of tissue disruption and the dramatic loss of acinar cells in 7d post-AP iMist1myc

pancreata followed by regeneration of Amylase+ acinar cells from 3w-8w post-AP time points. (C) Quantitative analysis of cell types associated with
iMist1myc pancreata in control and 7d and 8w post-AP. **p� 0.01; ***p� 0.001.

doi:10.1371/journal.pone.0145724.g008
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Lineage tracing strategies have confirmed that mouse and human PDAC can develop from
adult acinar cells upon KrasG12D and other oncogenic or tumor suppressor gene mutations [58,
77, 78]. However, despite the presence of a KRASG12D driver, most acinar cells remain refractile
to transformation unless secondary stressors are placed upon the cells [28, 79]. Although loss
ofMist1 can be a secondary driver to PDAC development, there is little evidence that homozy-
gous deletion ofMist1 alleles occurs in PDAC patients. Instead, other pathways that result in
decreasedMist1 expression could be responsible for enhancing PDAC development. For this
reason, we investigated how pancreatitis, a known risk factor for PDAC [12–14], influences
Mist1 gene expression and activity and ultimately the development of ADM lesions, the precur-
sors to PanIN/PDAC progression. Our studies revealed that theMist1 locus is transiently
silenced during the initial damage stage of AP. TheMist1 gene continues to be repressed as aci-
nar cells enter an early recovery phase during which a significant increase in cell proliferation
aids the organ in regenerating. However, as this recovery continues,Mist1 transcripts and pro-
tein return to normal levels, allowing the restored acinar tissue to resume normal secretory
activity. This is in contrast to instances where AP damage is combined with KRASG12D. In this
setting, ADM and PanIN lesions never recoverMist1 expression, suggesting that KRAS signal-
ing events permanently inhibit theMist1 gene in a cancer setting.

Despite re-expression ofMist1 following an AP episode, MIST1 is not necessary for acinar
cells to recover from AP damage.Mist1 cKO acini recovered with similar kinetics as observed
forMist1+/+ andMist1+/- acinar cells, althoughMist1 cKO cells continued to exhibit the secre-
tory defects ascribed toMist1 deficient cells. The similar response ofMist1+/- andMist1 cKO
pancreata to AP was surprising given that previous studies have shown thatMist1-/- (Mist1KO)

Fig 9. iMist1myc acinar cells exhibit apoptosis followed by regeneration of iMIST1myc-negative cells upon AP induction. (A) Acinar cells in iMist1myc

pancreata undergo extensive apoptosis as detected by cleaved CASPASE 3 staining in AMY+ cells. (B) Over time the number of MIST1myc+ cells is greatly
decreased as the iMist1myc pancreas recovers post-AP. (C) BrdU pulse labeling reveals that regeneration of iMist1myc pancreata following AP is due to
proliferation of rare acinar cells that did not activate expression of iMist1myc during the initial Tam treatment. Arrows indicate AMY+/BrdU+/MYC- cells.
***p� 0.001. N.D.—not detected.

doi:10.1371/journal.pone.0145724.g009
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mice display an increased sensitivity to AP with amplified damage responses and a delay in
regeneration [70]. Related studies have shown thatMist1KO pancreata are highly prone to etha-
nol-induced pancreas damage [80], suggesting that the absence of MIST1 sensitizes acinar cells
to general stress/insult events. The apparent disparity between these reports and our current
results is likely due to differences in theMist1model systems. In the case ofMist1KO mice, the
developing and adult pancreas always lacks MIST1 protein, leading to a significantly damaged
acinar cell state in post-weaned animals [33, 48]. Indeed, the enhanced stress and cell damage
associated withMist1KO pancreata highly sensitizes the organ to KRASG12D-induced transfor-
mation events [26, 39]. In contrast,Mist1 cKO animals allow for the conditional deletion of the
Mist1 loci in adult animals so that episodes of AP occur inMist1 null, but otherwise healthy
cells. This new model allows for the direct examination of the role of MIST1 in AP recovery in
the absence of the long-term stress and injury conditions associated with germ-lineMist1KO

mice. Thus, we show that deletingMist1 just prior to induced AP has little effect on pancreas
recovery, suggesting that the increased sensitivity ofMist1KO pancreata to AP was likely due to
the prior damaged status of theMist1KO organ. In support of this hypothesis,Mist1 cKOmice
expressed increased ADMmarkers over time that approached levels observed inMist1KO ani-
mals. Interestingly, Mehmood et al. [73] recently showed that germ-lineMist1KO pancreata are
enriched for H3K4Me3 active epigenetic marks on select genes that function within pancreati-
tis and PDAC pathways. Several of these genes are differentially expressed inMist1KO animals
in response to AP damage [73], demonstrating that the chronic damage and stress associated
with germ-line MIST1 deficiency results in key epigenetic changes that prime cells to increased
sensitivity to AP and PDAC tumor formation. Thus, we now show that the absence of MIST1
per se is not sufficient to produce the increased sensitivity to disease states. Rather, it is the gen-
eral damage and stress conditions associated with germ-lineMist1KO acinar cells that lead to
increased AP responses and PDAC development.

Given that MIST1 is critical for maintaining a healthy acinar cell state andMist1 gene
expression is transiently silenced during AP episodes, we investigated if sustained MIST1 activ-
ity could attenuate the initial damage response. Surprisingly, acinar cells that were prevented
from down-regulatingMist1 gene expression in the early stages of AP underwent CASPASE-3
dependent apoptosis, leaving the organ grossly reduced in size with large numbers of infiltrat-
ing immune and stromal cells occupying vast areas of the pancreas. Over the initial weeks post-
AP, the number of AMYLASE expressing acinar cells declined dramatically and most of the
remaining cells were assembled into small acini that lacked large accumulations of zymogen
granules. Sustained iMist1 expression also kept the majority of rare surviving cells in a quies-
cent state, most likely due to MIST1 controlling high p21Cip1/Waf1 levels [46]. This is in sharp
contrast to what has been shown for PanIN/PDAC formation inMist1KO/KrasG12D pancreata
[26, 39]. Here, sustained iMIST1 activity prevents PanIN development but with no signs of cell
death [39]. Thus, downstream KRAS signaling pathways likely provide a survival benefit to aci-
nar cells that retain MIST1 protein during initial ADM transitions.

Despite these widespread deficiencies, iMist1 organs did slowly recover functional acini
over time with lineage-tracing confirming that the majority of acinar cells at 8 weeks post-AP
were descendants of the small percentage of cells that failed to activate expression of the
LSL-Mist1myc transgene during the initial tamoxifen induction. These normal (MYC-) acinar
cells that silencedMist1 expression during AP were able to reactive the endogenousMist1 gene
and recover from damage. Indeed, these cells regenerated and repopulated much of the dam-
aged pancreas in this model system. We propose that silencingMist1 expression is a critical
event that permits acinar cells to survive an AP episode (Fig 10). Down-regulating MIST1
activity may allow cells to suppress secretory functions and p21Cip1/Waf1 levels and permit a
window of cell proliferation. Once established, theMist1 gene is then reactivated so that cells
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have the appropriate intracellular machinery to assemble their secretory vesicles, expand the
ER, communicate via CX32-containing gap junctions, and resume efficient exocytosis func-
tions. Thus, AP damage and recovery phases involve key transcriptional networks that control
the terminal differentiation and maturation status of these specialized secretory cells. Future
studies will be geared towards understanding the regulatory mechanisms that controlMist1
expression in both AP and PDAC disease states with a long-term goal of devising strategies to
modulate transcriptional networks that could alleviate clinical symptoms in patients diagnosed
with pancreatitis and pancreatic cancer.

Fig 10. Model of Mist1 silencing and re-expression following AP recovery. For acinar cells to recover from AP damage theMist1 gene is required to be
transiently silenced, allowing cells to reduce exocytosis function and enter a proliferative regeneration phase. Sustained iMist1myc expression during
episodes of AP leads to cell death via apoptosis. ZG—zymogen granules; rER—rough endoplasmic reticulum.

doi:10.1371/journal.pone.0145724.g010
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Supporting Information
S1 Fig. Quantification of AP damage in Mist1CreERT/+ animals. (A) Morphometric analysis
ofMist1CreERT/+ pancreata over the indicated times. (B) Relative CLUSTERIN, K19 and AMY-
LASE protein levels in IF sections fromMist1CreERT/+ pancreata at the indicated times and nor-
malized to control values. �p� 0.05; ��p� 0.01; ���p� 0.001; n.s.—not significant.
(TIF)

S2 Fig. IF images of Mist1CreERT/+ pancreata revealing nuclear MIST1 protein exclusively
in acinar cells. Islets and ducts remain MIST1 negative.
(TIF)

S3 Fig. Schematic of how the Mist1lox/+ mice were generated through homologous recombi-
nation. LoxP sites flank the entire Mist1 coding region which is contained within exon 2.
(TIF)

S4 Fig. Quantification of AP damage in Mist1CreERT/lox (Mist1 cKO) animals. (A) Morpho-
metric analysis ofMist1 cKO pancreata over the indicated times. (B) Relative CLUSTERIN,
K19 and AMYLASE protein levels in IF sections fromMist1 cKO pancreata at the indicated
times and normalized to control values. ��p� 0.01; ���p� 0.001; n.s.—not significant.
(TIF)

S5 Fig. Schematic of the LSL-Mist1myc transgene in iMist1myc mice.Mist1CreERT/+/iMist1myc

mice express the iMist1myc transgene exclusively in acinar cells upon Tam induction.
(TIF)

S6 Fig. Quantification of AP damage in iMist1 animals 6h-4d post-AP. (A) Morphometric
analysis of iMist1 pancreata over the indicated times. (B) Relative E-CADHERIN and CLUS-
TERIN protein levels in IF sections from iMist1 pancreata at the indicated times and normal-
ized to control values. (C) Relative CD45, SMA and VIMENTIN protein levels in IF sections
from iMist1 pancreata at the indicated times and normalized to control values. �p� 0.05;
��p� 0.01; ���p� 0.001; n.s.—not significant.
(TIF)

S7 Fig. H&E images of whole sections from post-AP iMist1myc pancreata. (A)Mist1CreERT/+

(left) and iMist1myc (right) pancreata 7d post-AP. iMist1myc pancreata contain very few
Amylase+ acini structures at this time point. Inset shows a higher magnification of the boxed
area. (B)Mist1CreERT/+ (left) and iMist1myc (right) pancreata 8w post-AP. At this time, iMi-
st1myc pancreata show substantial regeneration of healthy acini (arrows). Inset shows a higher
magnification of the boxed area.
(TIF)

S8 Fig. Quantification of AP damage in iMist1 animals 7d-8w post-AP. (A) Morphometric
analysis of iMist1 pancreata over the indicated extended times. (B) Relative CLUSTERIN, K19
and AMYLASE protein levels in IF sections from iMist1 pancreata at the indicated times and
normalized to control values. �p� 0.05; ��p� 0.01; ���p� 0.001; n.s.—not significant.
(TIF)

S1 Table. Genotyping Primer Sets.
(DOCX)

S2 Table. Antibodies (IF and IB).
(DOCX)
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