475 research outputs found
Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials
Rationale Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities. Methods The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF). Results A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed. Conclusion Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field
Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene
The chapter generalizes results on influence of uniaxial strain and
adsorption on the electron states and charge transport or localization in
graphene with different configurations of imperfections (point defects):
resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing
molecules or functional groups, vacancies or substitutional atoms, charged
impurity atoms or molecules, and distortions. To observe electronic properties
of graphene-admolecules system, we applied electron paramagnetic resonance
technique in a broad temperature range for graphene oxides as a good basis for
understanding the electrotransport properties of other active carbons. Applied
technique allowed observation of possible metal-insulator transition and
sorption pumping effect as well as discussion of results in relation to the
granular metal model. The electronic and transport properties are calculated
within the framework of the tight-binding model along with the Kubo-Greenwood
quantum-mechanical formalism. Depending on electron density and type of the
sites, the conductivity for correlated and ordered adsorbates is found to be
enhanced in dozens of times as compared to the cases of their random
distribution. In case of the uniaxially strained graphene, the presence of
point defects counteracts against or contributes to the band-gap opening
according to their configurations. The band-gap behaviour is found to be
nonmonotonic with strain in case of a simultaneous action of defect ordering
and zigzag deformation. The amount of localized charge carriers (spins) is
found to be correlated with the content of adsorbed centres responsible for the
formation of potential barriers and, in turn, for the localization effects.
Physical and chemical states of graphene edges, especially at a uniaxial strain
along one of them, play a crucial role in electrical transport phenomena in
graphene-based materials.Comment: 16 pages, 10 figure
Antimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion
Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.open302
The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides
[[abstract]]Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs)processed at low temperatures (120–1806C) were studied using X-ray absorption near-edge structure XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C 5 C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Ka XES spectra shows that the overlapping p and p* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Ka RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the p-region and/or in the gap between the p and p* levels of the GO and rGOs. Two-dimensional C Ka RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the p and s features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB
Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy
[[abstract]]This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced
graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve
defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the
GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily
reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature.
Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure
spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are
bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat
and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and
the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further
support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based
on experimental results and first-principles calculations, the variation in magnetic behavior from GO
to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-
derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with
oxygen-containing and hydroxyl groups on GO sheets.[[notice]]補正完
Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy
Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies
Few Layer Reduced Graphene Oxide: Evaluation of the Best Experimental Conditions for Easy Production
This work aimed to produce graphene oxide with few graphene layers, a low number of defects, good conductivity and reasonable amount of oxygen, adequate for use as filler in polymeric composites. Two starting materials were evaluated: expanded graphite and graphite flakes. The method of oxidation used was the Staudenmaier one, which was tested over different lengths of time. No appreciable differences were found among the oxidation times and so the lowest oxidation time (24 h) was chosen as the most adequate. An investigation was also conducted into suitable temperatures for the reduction of graphite oxide. A temperature of 1000 ºC gave the best results, allowing a good quality material with few defects to be obtained. The reduction was also evaluated under inert and normal atmosphere. The best results were obtained when the least modified material, e. g., graphite flakes, was used as a starting material, oxidized for 24h and reduced at 1000 ºC for 30 s in a quartz ampoule under a normal atmosphere
- …
