956 research outputs found

    A Simple Model for the Absorption of Starlight by Dust in Galaxies

    Full text link
    We present a new model to compute the effects of dust on the integrated spectral properties of galaxies, based on an idealized prescription of the main features of the interstellar medium (ISM). The model includes the ionization of HII regions in the interiors of the dense clouds in which stars form and the influence of the finite lifetime of these clouds on the absorption of radiation. We compute the production of emission lines and the absorption of continuum radiation in the HII regions and the subsequent transfer of line and continuum radiation in the surrounding HI regions and the ambient ISM. This enables us to interpret simultaneously all the observations of a homogeneous sample of nearby UV-selected starburst galaxies, including the ratio of far-IR to UV luminosities, the ratio of Halpha to Hbeta luminosities, the Halpha equivalent width, and the UV spectral slope. We show that the finite lifetime of stellar birth clouds is a key ingredient to resolve an apparent discrepancy between the attenuation of line and continuum photons in starburst galaxies. In addition, we find that an effective absorption curve proportional to lambda^-0.7 reproduces the observed relation between the ratio of far-IR to UV luminosities and the UV spectral slope. We interpret this relation most simply as a sequence in the overall dust content of the galaxies. The shallow wavelength dependence of the effective absorption curve is compatible with the steepness of known extinction curves if the dust has a patchy distribution. In particular, we find that a random distribution of discrete clouds with optical depths similar to those in the Milky Way provides a consistent interpretation of all the observations. Our model for absorption can be incorporated easily into any population synthesis model. (abridged)Comment: To appear in the 2000 July 20 issue of the Astrophysical Journal; 19 pages with 13 embedded PS figures (emulateapj5.sty

    Formation of Primordial Protostars

    Get PDF
    The evolution of collapsing metal free protostellar clouds is investigated for various masses and initial conditions. We perform hydrodynamical calculations for spherically symmetric clouds taking account of radiative transfer of the molecular hydrogen lines and the continuum, as well as of chemistry of the molecular hydrogen. The collapse is found to proceed almost self-similarly like Larson-Penston similarity solution. In the course of the collapse, efficient three-body processes transform atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular form. However, hydrogen in the outer part remains totally atomic although there is an intervening transitional layer of several solar masses, where hydrogen is in partially molecular form. No opaque transient core is formed although clouds become optically thick to H2_{2} collision-induced absorption continuum, since H2_{2} dissociation follows successively. When the central part of the cloud reaches stellar densities (∼10−2gcm−3\sim 10^{-2} {\rm g cm^{-3}}), a very small hydrostatic core (\sim 5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the ambient gas accretes onto it. The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun} {\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where M∗M_{\ast} is instantaneous mass of the central core, by using a similarity solution which reproduces the evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR

    Importance of Compton scattering to radiation spectra of isolated neutron stars

    Get PDF
    Model atmospheres of isolated neutron stars with low magnetic field are calculated with Compton scattering taking into account. Models with effective temperatures 1, 3 and 5 MK, with two values of surface gravity log(g)g = 13.9 and 14.3), and different chemical compositions are calculated. Radiation spectra computed with Compton scattering are softer than the computed with Thomson scattering at high energies (E > 5 keV) for hot (T_eff > 1 MK) atmospheres with hydrogen-helium composition. Compton scattering is more significant to hydrogen models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 MK) model atmospheres can be described by diluted blackbody spectra with hardness factors ~ 1.6 - 1.9. Compton scattering is less important for models with solar abundance of heavy elements.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.173-17

    How exactly did the Universe become neutral?

    Get PDF
    We present a refined treatment of H, He I, and He II recombination in the early Universe. The difference from previous calculations is that we use multi-level atoms and evolve the population of each level with redshift by including all bound-bound and bound-free transitions. In this framework we follow several hundred atomic energy levels for H, He I, and He II combined. The main improvements of this method over previous recombination calculations are: (1) allowing excited atomic level populations to depart from an equilibrium distribution; (2) replacing the total recombination coefficient with recombination to and photoionization from each level directly at each redshift step; and (3) correct treatment of the He I atom, including the triplet and singlet states. We find that the ionization fraction x_e = n_e/n_H is approximately 10% smaller at redshifts <~800 than in previous calculations, due to the non-equilibrium of the excited states of H, which is caused by the strong but cool radiation field at those redshifts. In addition we find that He I recombination is delayed compared with previous calculations, and occurs only just before H recombination. These changes in turn can affect the predicted power spectrum of microwave anisotropies at the few percent level. Other improvements such as including molecular and ionic species of H, including complete heating and cooling terms for the evolution of the matter temperature, including collisional rates, and including feedback of the secondary spectral distortions on the radiation field, produce negligible change to x_e. The lower x_e at low z found in this work affects the abundances of H molecular and ionic species by 10-25%. However this difference is probably not larger than other uncertainties in the reaction rates.Comment: 24 pages, including 18 figures, using emulateapj.sty, to appear in ApJ, the code recfast can be obtained at http://www.astro.ubc.ca/people/scott/recfast.html (in FORTRAN) and http://cfa-www.harvard.edu/~sasselov/rec/ (in C

    Photoemission of Bi2_2Se3_3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Get PDF
    Topological insulators are characterized by Dirac cone surface states with electron spins aligned in the surface plane and perpendicular to their momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50-70 eV) with linear or circular polarization probe indeed the initial state spin texture of Bi2_2Se3_3 while circularly polarized 6 eV low energy photons flip the electron spins out of plane and reverse their spin polarization. Our photoemission calculations, considering the interplay between the varying probing depth, dipole selection rules and spin-dependent scattering effects involving initial and final states explain these findings, and reveal proper conditions for light-induced spin manipulation. This paves the way for future applications of topological insulators in opto-spintronic devices.Comment: Submitted for publication (2013

    Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy (FCS): Theory and applications

    Full text link
    In the current AFM experiments the distribution of unfolding times, P(t), is measured by applying a constant stretching force f_s from which the apparent unfolding rate is obtained. To describe the complexity of the underlying energy landscape requires additional probes that can incorporate the dynamics of tension propagation and relaxation of the polypeptide chain upon force quench. We introduce a theory of force correlation spectroscopy (FCS) to map the parameters of the energy landscape of proteins. In the FCS the joint distribution, P(T,t) of folding and unfolding times is constructed by repeated application of cycles of stretching at constant fs, separated by release periods T during which the force is quenched to f_q<f_s. During the release period, the protein can collapse to a manifold of compact states or refold. We show that P(T,t) can be used to resolve the kinetics of unfolding as well as formation of native contacts and to extract the parameters of the energy landscape using chain extension as the reaction coordinate and P(T,t). We illustrate the utility of the proposed formalism by analyzing simulations of unfolding-refolding trajectories of a coarse-grained protein S1 with beta-sheet architecture for several values of f_s, T and f_q=0. The simulations of stretch-relax trajectories are used to map many of the parameters that characterize the energy landscape of S1.Comment: 23 pages, 9 figures; accepted to Biophysical Journa

    Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities

    Full text link
    We obtain constraints on the slope of a universal stellar initial mass function (IMF) over a range of cosmic star-formation histories (SFH) using z=0.1 luminosity densities in the range from 0.2 to 2.2 microns. The age-IMF degeneracy of integrated spectra of stellar populations can be broken for the Universe as a whole by using direct measurements of (relative) cosmic SFH from high-redshift observations. These have only marginal dependence on uncertainties in the IMF, whereas, fitting to local luminosity densities depends strongly on both cosmic SFH and the IMF. We fit to these measurements using population synthesis and find the best-fit IMF power-law slope to be Gamma=1.15+-0.2 (0.5 < M/M_solar < 120). This slope is in good agreement with the Salpeter IMF slope (Gamma=1.35). A strong upper limit of Gamma<1.7 is obtained which effectively rules out the Scalo IMF due to its too low fraction of high-mass stars. This upper limit is at the 99.7% confidence level if we assume a closed-box chemical evolution scenario and 95% if we assume constant solar metallicity. Fitting to the H-alpha line luminosity density, we obtain a best-fit IMF slope in good agreement with that derived from broadband measurements. Marginalizing over cosmic SFH and IMF slope, we obtain (95% conf. ranges, h=1): omega_stars = 1.1-2.0 E-3 for the stellar mass density; rho_sfr = 0.7-4.1 E-2 M_solar/yr/Mpc^3 for the star-formation rate density, and; rho_L = 1.2-1.7 E+35 W/Mpc^3 for the bolometric, attenuated, stellar, luminosity density (0.09-5 microns). Comparing this total stellar emission with an estimate of the total dust emission implies a relatively modest average attenuation in the UV (<=1 magnitude at 0.2 microns).Comment: 16 pages, accepted by Ap

    Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    Full text link
    We present high-resolution (R ~ 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10^5 - 10^7 M_sun for a Kroupa IMF) and their spectra are characterized by broad, extended Br-gamma emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Brgamma lines of most ELCs have supersonic widths (60-110 km/s FWHM) and non-Gaussian wings whose velocities exceed the clusters' escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters' massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.Comment: Accepted to Ap
    • …
    corecore