598 research outputs found

    Liquid-vapor oscillations of water in hydrophobic nanopores

    Full text link
    Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460 ns in total) at pore radii ranging from 0.35 nm to 1.0 nm we quantify the kinetics of oscillations between a liquid-filled and a vapor-filled pore. This behavior can be explained as capillary evaporation alternating with capillary condensation, driven by pressure fluctuations in the water outside the pore. The free energy difference between the two states depends linearly on the radius. The free energy landscape shows how a metastable liquid state gradually develops with increasing radius. For radii larger than ca. 0.55 nm it becomes the globally stable state and the vapor state vanishes. One dimensional confinement affects the dynamic behavior of the water molecules and increases the self diffusion by a factor of two to three compared to bulk water. Permeabilities for the narrow pores are of the same order of magnitude as for biological water pores. Water flow is not continuous but occurs in bursts. Our results suggest that simulations aimed at collective phenomena such as hydrophobic effects may require simulation times longer than 50 ns. For water in confined geometries, it is not possible to extrapolate from bulk or short time behavior to longer time scales.Comment: 20 pages, 4 figures, 3 tables; to be published in Proc. Natl. Acad. Sci. US

    Formation of Pillars at the Boundaries between H II Regions and Molecular Clouds

    Get PDF
    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value.Comment: 21 pages, 8 figures, accepted for publication in ApJ. high resolution figures available upon reques

    Photoemission of Bi2_2Se3_3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Get PDF
    Topological insulators are characterized by Dirac cone surface states with electron spins aligned in the surface plane and perpendicular to their momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50-70 eV) with linear or circular polarization probe indeed the initial state spin texture of Bi2_2Se3_3 while circularly polarized 6 eV low energy photons flip the electron spins out of plane and reverse their spin polarization. Our photoemission calculations, considering the interplay between the varying probing depth, dipole selection rules and spin-dependent scattering effects involving initial and final states explain these findings, and reveal proper conditions for light-induced spin manipulation. This paves the way for future applications of topological insulators in opto-spintronic devices.Comment: Submitted for publication (2013

    Re-defining the Empirical ZZ Ceti Instability Strip

    Get PDF
    We use the new ZZ Ceti stars (hydrogen atmosphere white dwarf variables; DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to re-define the empirical ZZ Ceti instability strip. This is the first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra acquired using the same instrument on the same telescope, and with consistent data reductions, for a statistically significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic temperatures and we find a narrow instability strip of width ~950K, from 10850--11800K. We question the purity of the DAV instability strip as we find several non-variables within. We present our best fit for the red edge and our constraint for the blue edge of the instability strip, determined using a statistical approach.Comment: 14 pages, 5 pages, ApJ paper, accepte

    Discovery of 9 Ly alpha emitters at redshift z~3.1 using narrow-band imaging and VLT spectroscopy

    Full text link
    Narrow-band imaging surveys aimed at detecting the faint emission from the 5007 [O III] line of intracluster planetary nebulae in Virgo also probe high redshift z=3.1 Ly alpha emitters. Here we report on the spectroscopic identification of 9 Ly alpha emitters at z=3.13, obtained with the FORS spectrograph at Unit 1 of the ESO Very Large Telescope (VLT UT1). The spectra of these high redshift objects show a narrow, isolated Ly alpha emission with very faint (frequently undetected) continuum, indicating a large equivalent width. No other features are visible in our spectra. Our Ly alpha emitters are quite similar to those found by Hu (1998), Cowie & Hu (1998) and Hu et al. (1998). Using simple population synthesis models, on the assumption that these sources are regions of star formation, we conclude that the nebulae are nearly optically thick and must have a very low dust content, in order to explain the high observed Ly alpha equivalent widths. For the cosmological and star formation parameters we adopted, the total stellar mass produced would seem to correspond to the formation of rather small galaxies, some of which are perhaps destined to merge. The implied star formation density in our sampled comoving volume is probably somewhat smaller than, but of the same order of magnitude as the star formation density at z=3 derived by other authors from Lyman-break galaxy surveys. This result agrees with the expectation that the Ly alpha emitters are a low-metallicity (or low-dust) tail in a distribution of star forming regions at high redshifts. Finally, the Ly alpha emitters may contribute as many H-ionizing photons as QSOs at z=3.Comment: 26 pages, 17 Postscript figures, ApJ in pres

    Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    Full text link
    We present high-resolution (R ~ 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10^5 - 10^7 M_sun for a Kroupa IMF) and their spectra are characterized by broad, extended Br-gamma emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Brgamma lines of most ELCs have supersonic widths (60-110 km/s FWHM) and non-Gaussian wings whose velocities exceed the clusters' escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters' massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.Comment: Accepted to Ap

    An Investigation of Diffuse Interstellar Gas toward a Large, Low Extinction Window into the Inner Galaxy

    Full text link
    Halpha and Hbeta spectroscopy with the Wisconsin H-Alpha Mapper (WHAM) reveals a strong concentration of high velocity emission in a ~ 5 by 5 deg area centered near (l.b) = (27,-3), known as the Scutum Cloud. The high velocities imply that we are detecting optical emission from near the plane of the Galaxy out to the tangent point at heliocentric distances of D \gtrsim 6 kpc, assuming the gas participates in circular Galactic rotation. The ratio of the Halpha to Hbeta emission as a function of velocity suggests that dust along these lines of sight produces a total visual extinction of A_v ~ 3 at D ~ 6 kpc. This makes it possible to use optical emission lines to explore the physical conditions of ionized gas in the inner Galaxy. At a Galactocentric distance R_G ~ 4 kpc, for example, we find that the H^+ has an rms midplane density of ~ 1 cm^-3 with a vertical scale height of ~ 300 pc. We also find evidence for an increase in the flux of Lyman continuum photons and an increase in the ratio of ionized to neutral hydrogen toward the inner Galaxy. We have extended the measurements of E(B-V) in this direction to distances far beyond what has been accessible through stellar photometry and find E(B-V)/N_H to be near the local mean of 1.7 x 10^-22 cm^2 mag, with evidence for an increase in this ratio at R_G ~ 4 kpc. Finally, our observations of [NII] 6583, [SII] 6716, and [OIII] 5007 toward the window reveal that in the inner Galaxy the temperature of the gas and the ionization state of oxygen increase with increasing height from the midplane.Comment: ApJ, accepted. 28 pages, 13 figures, 1 tabl

    Lyman alpha line formation in starbursting galaxies I. Moderately thick, dustless, and static HI media

    Full text link
    We investigate the Lyman alpha line transfer in nearby and high redshift starbursting galaxies, where the effect of high optical depths and the role of dust in the scattering medium are expected to be conspicuous and should be treated in a very careful manner. We present our first results in dustless, static, and uniform HI media with moderate Lyman alpha line center optical depths \tau_0=10^{3-6}. We assume that the temperatures of media to be T=10^{1-4}K, and use a Monte Carlo technique. We investigate the basic processes of the line transfer and confirm the criterion of a\tau_0>10^3 for the validity of diffusion approximation suggested by Neufeld in 1990, where aa is the Voigt parameter. Adopting the model suggested by Tenorio-Tagle et al., we performed calculations on the Lyman alpha line formation for each evolutionary stage of an expanding supershell. The emergent Lyman alpha profiles are characterized by the double peaks and the absorption trough at the line center. We found that the absorption troughs expected in most of the evolutionary stages are not wide enough to be observed with current instruments. However, the absorption trough in the Lyman alpha emission profile from an expanding recombining supershell can be marginally detected.Comment: 38 pages, 12 figures, Accepted for publication in the Ap

    Escape probability methods versus "exact" transfer for modelling the X-ray spectrum of Active Galactic Nuclei and X-ray binaries

    Full text link
    In the era of XMM-Newton and Chandra missions, it is crucial to use codes able to compute correctly the line spectrum of X-ray irradiated thick media (Thomson thickness of the order of unity) to build models for the structure and the emission of the central regions of AGN or X-ray binaries. In all photoionized codes except in our code Titan, the line intensities are computed with the "escape probability approximation". In its last version, Titan solves the transfer of a thousand lines and of the continuum with the ``Accelerated Lambda Iteration" method, which is one of the most efficient and most secure for line transfer. We find that for conditions typical of the AGN or X-ray binary emission medium, all escape approximations commonly used lead to an overestimation of the soft X-ray lines which can reach one order of magnitude for intense lines.Comment: 19 pages, 14 figures, accepted in A&
    • 

    corecore