1,667 research outputs found

    Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments

    Get PDF
    For crucial tests between theory and experiment, ab initio close coupling calculations are carried out for photoionization of O II, O III, O IV, O V. The relativistic fine structure and resonance effects are studied using the R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM) approximation. Detailed comparison is made with high resolution experimental measurements carried out in three different set-ups: Advanced Light Source at Berkeley, and synchrotron radiation experiments at University of Aarhus and University of Paris-Sud. The comparisons illustrate physical effects in photoionization such as (i) fine structure, (ii) resolution, and (iii) metastable components. Photoionization cross sections sigma{PI} of the ground and a few low lying excited states of these ions obtained in the experimental spectrum include combined features of these states. Theoretically calculated resonances need to be resolved with extremely fine energy mesh for precise comparison. In addition, prominent resonant features are observed in the measured spectra from transitions allowed with relativistic fine structure, but not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i) 2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and 2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found that resonances in ground and metastable cross sections can be a diagnostic of experimental beam composition, with potential ap plications to astrophysical and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p

    The Unusual Object IC 2144/MWC 778

    Full text link
    IC 2144 is a small reflection nebula located in the zone of avoidance near the Galactic anticenter. It has been investigated here largely on the basis of Keck/HIRES optical spectroscopy (R ~ 48,000) and a SpeX spectrogram in the near-IR (R = 2000) obtained at the NASA IRTF. The only star in the nebula that is obvious in the optical or near-IR is the peculiar emission-line object MWC 778 (V = 12.8), which resembles a T Tauri star in some respects. What appear to be F- or G-type absorption features are detectable in its optical region under the very complex emission line spectrum; their radial velocity agrees with the CO velocity of the larger cloud in which IC 2144 is embedded. There are significant differences between the spectrum of the brightest area of the nebula and of MWC 778, the presumed illuminator, an issue discussed in some detail. The distance of IC 2144 is inferred to be about 1.0 kpc by reference to other star-forming regions in the vicinity. The extinction is large, as demonstrated by [Fe II] emission line ratios in the near-IR and by the strength of the diffuse interstellar band spectrum; a provisional value of A_V of 3.0 mag was assumed. The SED of MWC 778 rises steeply beyond about 1 μ\mum, with a slope characteristic of a Class I source. Integration of the flux distribution leads to an IR luminosity of about 510 L_solar. If MWC 778 is indeed a F- or G-type pre--main-sequence star several magnitudes above the ZAMS, a population of faint emission Halpha stars would be expected in the vicinity. Such a search, like other investigations that are recommended in this paper, has yet to be carried out.Comment: 36 pages, 13 figures, accepted by A

    Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements VI. Ni II

    Get PDF
    We present the first detailed ab initio quantum mechanical calculations for total and state-specific recombination rate coefficients for e + Ni III --> Ni II. These rates are obtained using a unified treatment for total electron-ion recombination that treats the nonresonant radiative recombination and the resonant dielectronic recombination in a self-consistent unified manner in the close coupling approximation. Large-scale calculations are carried out using a 49-state wavefunction expansion from core configurations 3d^8, 3d^74s, and 3d^64p that permits the inclusion of prominent dipole allowed core transitions. These extensive calculations for the recombination rates of Ni II required hundreds of CPU hours on the Cray T90. The total recombination rate coefficients are provided for a wide range of temperature. The state-specific recombination rates for 532 bound states of doublet and quartet symmetries, and the corresponding photoionization cross sections for leaving the core in the ground state, are presented. Present total recombination rate coefficients differ considerably from the currently used data in astrophysical models.Comment: ApJ Suppl. (submitted), 4 figure

    The 21cm Signature of the First Stars

    Get PDF
    We predict the 21-cm signature of the first metal-free stars. The soft X-rays emitted by these stars penetrate the atomic medium around their host halos, generating Lyman alpha photons that couple the spin and kinetic temperatures. These creates a region we call the Lyman alpha sphere, visible in 21-cm against the CMB, which is much larger than the HII region produced by the same star. The spin and kinetic temperatures are strongly coupled before the X-rays can substantially heat the medium, implying that a strong 21-cm absorption signal from the adiabatically cooled gas in Hubble expansion around the star is expected when the medium has not been heated previously. A central region of emission from the gas heated by the soft X-rays is also present although with a weaker signal than the absorption. The Lyman alpha sphere is a universal signature that should be observed around any first star illuminating its vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere can be calculated as a function of the luminosity, spectrum and age of the star. For a star of a few hundred solar masses and zero metallicity (as expected for the first stars), the physical radius of the Lyman alpha sphere can reach tens of kiloparsecs. The first metal-free stars should be strongly clustered because of high cosmic biasing; this implies that the regions producing a 21-cm absorption signal may contain more than one star and will generally be irregular and not spherical, because of the complex distribution of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres, which would be present at redshifts z30z\sim 30 in the Cold Dark Matter model. Their observation would represent a direct proof of the detection of a first star.Comment: replaced with ApJ accepted version. Many minor revisions and additional references, major results unchange

    Kinetics and mechanism of proton transport across membrane nanopores

    Full text link
    We use computer simulations to study the kinetics and mechanism of proton passage through a narrow-pore carbon-nanotube membrane separating reservoirs of liquid water. Free energy and rate constant calculations show that protons move across the membrane diffusively in single-file chains of hydrogen-bonded water molecules. Proton passage through the membrane is opposed by a high barrier along the effective potential, reflecting the large electrostatic penalty for desolvation and reminiscent of charge exclusion in biological water channels. At neutral pH, we estimate a translocation rate of about 1 proton per hour and tube.Comment: 4 pages, 4 figure

    Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments

    Full text link
    Single molecule mechanical unfolding experiments are beginning to provide profiles of the complex energy landscape of biomolecules. In order to obtain reliable estimates of the energy landscape characteristics it is necessary to combine the experimental measurements with sound theoretical models and simulations. Here, we show how by using temperature as a variable in mechanical unfolding of biomolecules in laser optical tweezer or AFM experiments the roughness of the energy landscape can be measured without making any assumptions about the underlying reaction oordinate. The efficacy of the formalism is illustrated by reviewing experimental results that have directly measured roughness in a protein-protein complex. The roughness model can also be used to interpret experiments on forced-unfolding of proteins in which temperature is varied. Estimates of other aspects of the energy landscape such as free energy barriers or the transition state (TS) locations could depend on the precise model used to analyze the experimental data. We illustrate the inherent difficulties in obtaining the transition state location from loading rate or force-dependent unfolding rates. Because the transition state moves as the force or the loading rate is varied it is in general difficult to invert the experimental data unless the curvature at the top of the one dimensional free energy profile is large, i.e the barrier is sharp. The independence of the TS location on force holds good only for brittle or hard biomolecules whereas the TS location changes considerably if the molecule is soft or plastic. We also comment on the usefulness of extension of the molecule as a surrogate reaction coordinate especially in the context of force-quench refolding of proteins and RNA.Comment: 44 pages, 7 figure

    HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification

    Get PDF
    Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.</jats:p

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR

    Formation of Primordial Protostars

    Get PDF
    The evolution of collapsing metal free protostellar clouds is investigated for various masses and initial conditions. We perform hydrodynamical calculations for spherically symmetric clouds taking account of radiative transfer of the molecular hydrogen lines and the continuum, as well as of chemistry of the molecular hydrogen. The collapse is found to proceed almost self-similarly like Larson-Penston similarity solution. In the course of the collapse, efficient three-body processes transform atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular form. However, hydrogen in the outer part remains totally atomic although there is an intervening transitional layer of several solar masses, where hydrogen is in partially molecular form. No opaque transient core is formed although clouds become optically thick to H2_{2} collision-induced absorption continuum, since H2_{2} dissociation follows successively. When the central part of the cloud reaches stellar densities (102gcm3\sim 10^{-2} {\rm g cm^{-3}}), a very small hydrostatic core (\sim 5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the ambient gas accretes onto it. The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun} {\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where MM_{\ast} is instantaneous mass of the central core, by using a similarity solution which reproduces the evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
    corecore