1,510 research outputs found

    O stars effective temperature and HII regions ionization parameter gradients in the Galaxy

    Full text link
    Extensive photoionization model grids are computed for single star HII regions using stellar atmosphere models from the WM-basic code. Mid-IR emission line intensities are predicted and diagnostic diagrams of [NeIII]/[NeII] and [SIV]/[SIII] excitation ratio are build, taking into account the metallicities of both the star and the HII region. The diagrams are used in conjunction with galactic HII region observations obtained with the ISO Observatory to determine the effective temperature Teff of the exciting O stars and the mean ionization parameter U. Teff and U are found to increase and decrease, respectively, with the metallicity of the HII region represented by the [Ne/Ne_sol] ratio. No evidence is found for gradients of Teff or U with galactocentric distance Rgal. The observed excitation sequence with Rgal is mainly due to the effect of the metallicity gradient on the spectral ionizing shape, upon which the effect of an increase in Teff with Z is superimposed. We show that not taking properly into account the effect of metallicity on the ionizing shape of the stellar atmosphere would lead to an apparent decrease of Teff with Z and an increase of Teff with Rgal.Comment: Accepted in Ap

    Density-Dependent Analysis of Nonequilibrium Paths Improves Free Energy Estimates II. A Feynman-Kac Formalism

    Full text link
    The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.Comment: 21 pages, 5 figure

    Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization

    Full text link
    The spectra of the first galaxies and quasars in the Universe should be strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by neutral hydrogen (HI) in the intervening intergalactic medium. However, the Lyman-alpha line photons emitted by these sources are not eliminated but rather scatter until they redshift out of resonance and escape due to the Hubble expansion of the surrounding intergalactic HI. We calculate the resulting brightness distribution and the spectral shape of the diffuse Lyman-alpha line emission around high redshift sources, before the intergalactic medium was reionized. Typically, the Lyman-alpha photons emitted by a source at z=10 scatter over a characteristic angular radius of order 15 arcseconds around the source and compose a line which is broadened and redshifted by about a thousand km/s relative to the source. The scattered photons are highly polarized. Detection of the diffuse Lyman-alpha halos around high redshift sources would provide a unique tool for probing the neutral intergalactic medium before the epoch of reionization. On sufficiently large scales where the Hubble flow is smooth and the gas is neutral, the Lyman-alpha brightness distribution can be used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3 corrected; new section added on the detectability of Lyman alpha halos; conclusions update

    Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments

    Get PDF
    For crucial tests between theory and experiment, ab initio close coupling calculations are carried out for photoionization of O II, O III, O IV, O V. The relativistic fine structure and resonance effects are studied using the R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM) approximation. Detailed comparison is made with high resolution experimental measurements carried out in three different set-ups: Advanced Light Source at Berkeley, and synchrotron radiation experiments at University of Aarhus and University of Paris-Sud. The comparisons illustrate physical effects in photoionization such as (i) fine structure, (ii) resolution, and (iii) metastable components. Photoionization cross sections sigma{PI} of the ground and a few low lying excited states of these ions obtained in the experimental spectrum include combined features of these states. Theoretically calculated resonances need to be resolved with extremely fine energy mesh for precise comparison. In addition, prominent resonant features are observed in the measured spectra from transitions allowed with relativistic fine structure, but not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i) 2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and 2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found that resonances in ground and metastable cross sections can be a diagnostic of experimental beam composition, with potential ap plications to astrophysical and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p

    The 21cm Signature of the First Stars

    Get PDF
    We predict the 21-cm signature of the first metal-free stars. The soft X-rays emitted by these stars penetrate the atomic medium around their host halos, generating Lyman alpha photons that couple the spin and kinetic temperatures. These creates a region we call the Lyman alpha sphere, visible in 21-cm against the CMB, which is much larger than the HII region produced by the same star. The spin and kinetic temperatures are strongly coupled before the X-rays can substantially heat the medium, implying that a strong 21-cm absorption signal from the adiabatically cooled gas in Hubble expansion around the star is expected when the medium has not been heated previously. A central region of emission from the gas heated by the soft X-rays is also present although with a weaker signal than the absorption. The Lyman alpha sphere is a universal signature that should be observed around any first star illuminating its vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere can be calculated as a function of the luminosity, spectrum and age of the star. For a star of a few hundred solar masses and zero metallicity (as expected for the first stars), the physical radius of the Lyman alpha sphere can reach tens of kiloparsecs. The first metal-free stars should be strongly clustered because of high cosmic biasing; this implies that the regions producing a 21-cm absorption signal may contain more than one star and will generally be irregular and not spherical, because of the complex distribution of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres, which would be present at redshifts z30z\sim 30 in the Cold Dark Matter model. Their observation would represent a direct proof of the detection of a first star.Comment: replaced with ApJ accepted version. Many minor revisions and additional references, major results unchange

    Optimized free energies from bidirectional single-molecule force spectroscopy

    Full text link
    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy - valid for biasing potentials of arbitrary stiffness - are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.Comment: 4 pages, 2 figure

    The Unusual Object IC 2144/MWC 778

    Full text link
    IC 2144 is a small reflection nebula located in the zone of avoidance near the Galactic anticenter. It has been investigated here largely on the basis of Keck/HIRES optical spectroscopy (R ~ 48,000) and a SpeX spectrogram in the near-IR (R = 2000) obtained at the NASA IRTF. The only star in the nebula that is obvious in the optical or near-IR is the peculiar emission-line object MWC 778 (V = 12.8), which resembles a T Tauri star in some respects. What appear to be F- or G-type absorption features are detectable in its optical region under the very complex emission line spectrum; their radial velocity agrees with the CO velocity of the larger cloud in which IC 2144 is embedded. There are significant differences between the spectrum of the brightest area of the nebula and of MWC 778, the presumed illuminator, an issue discussed in some detail. The distance of IC 2144 is inferred to be about 1.0 kpc by reference to other star-forming regions in the vicinity. The extinction is large, as demonstrated by [Fe II] emission line ratios in the near-IR and by the strength of the diffuse interstellar band spectrum; a provisional value of A_V of 3.0 mag was assumed. The SED of MWC 778 rises steeply beyond about 1 μ\mum, with a slope characteristic of a Class I source. Integration of the flux distribution leads to an IR luminosity of about 510 L_solar. If MWC 778 is indeed a F- or G-type pre--main-sequence star several magnitudes above the ZAMS, a population of faint emission Halpha stars would be expected in the vicinity. Such a search, like other investigations that are recommended in this paper, has yet to be carried out.Comment: 36 pages, 13 figures, accepted by A

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR
    corecore