Extensive photoionization model grids are computed for single star HII
regions using stellar atmosphere models from the WM-basic code. Mid-IR emission
line intensities are predicted and diagnostic diagrams of [NeIII]/[NeII] and
[SIV]/[SIII] excitation ratio are build, taking into account the metallicities
of both the star and the HII region. The diagrams are used in conjunction with
galactic HII region observations obtained with the ISO Observatory to determine
the effective temperature Teff of the exciting O stars and the mean ionization
parameter U. Teff and U are found to increase and decrease, respectively, with
the metallicity of the HII region represented by the [Ne/Ne_sol] ratio. No
evidence is found for gradients of Teff or U with galactocentric distance Rgal.
The observed excitation sequence with Rgal is mainly due to the effect of the
metallicity gradient on the spectral ionizing shape, upon which the effect of
an increase in Teff with Z is superimposed. We show that not taking properly
into account the effect of metallicity on the ionizing shape of the stellar
atmosphere would lead to an apparent decrease of Teff with Z and an increase of
Teff with Rgal.Comment: Accepted in Ap