370 research outputs found

    On Guiding Search in HTN Temporal Planning with non Temporal Heuristics

    Full text link
    The Hierarchical Task Network (HTN) formalism is used to express a wide variety of planning problems as task decompositions, and many techniques have been proposed to solve them. However, few works have been done on temporal HTN. This is partly due to the lack of a formal and consensual definition of what a temporal hierarchical planning problem is as well as the difficulty to develop heuristics in this context. In response to these inconveniences, we propose in this paper a new general POCL (Partial Order Causal Link) approach to represent and solve a temporal HTN problem by using existing heuristics developed to solve non temporal problems. We show experimentally that this approach is performant and can outperform the existing ones

    Electrophoretic behavior of streptavidin complexed to a biotinylated probe : A functional screening assay for biotin-binding proteins

    Get PDF
    The biotin-binding protein streptavidin exhibits a high stability against thermal denaturation, especially when complexed to biotin. Herein we show that, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), streptavidin is stabilized at high temperature in the presence of biotinylated fluorescent probes, such as biotin-4-fluorescein, which is incorporated within the binding pocket. In nondenaturing SDS-PAGE, streptavidin is detectable when complexed with biotin-4-fluorescein using a UV-transilluminator. Using biotin-4-fluorescein, the detection limit of streptavidin lies in the same range as with Coomassie blue staining. The functionality of streptavidin mutants can readily be assessed from crude bacterial extracts using biotin-4-fluorescein as a probe in nondenaturing SDS-PAGE

    Les effets de l'immersion en eau froide ou contrastée sur la récupération post-effort dans les sports acycliques: une revue systématique et une méta-analyse

    Get PDF
    Les différentes techniques d’immersion, que ce soit en eau froide (Cold Water Immersion, CWI) ou en eau contrastée (Contrast Water Therapy, CWT) représentent un fort intérêt dans le monde du sport afin d’optimiser la récupération des athlètes. Cependant, un manque de consensus existe quant aux effets et à l’utilité de ces modalités de récupération. Le but de notre travail est d’évaluer les effets de la CWI et de la CWT sur la récupération suite à un effort musculaire dans les sports acycliques

    The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA

    Get PDF
    The nucleocapsid (NC) protein plays key roles in Human Immunodeficiency Virus 1 (HIV-1) replication, notably by condensing and protecting the viral RNA genome and by chaperoning its reverse transcription into double-stranded DNA (dsDNA). Recent findings suggest that integration of viral dsDNA into the host genome, and hence productive infection, is linked to a small subpopulation of viral complexes where reverse transcription was completed within the intact capsid. Therefore, the synthesized dsDNA has to be tightly compacted, most likely by NC, to prevent breaking of the capsid in these complexes. To investigate NC\u27s ability to compact viral dsDNA, we here characterize the compaction of single dsDNA molecules under unsaturated NC binding conditions using nanofluidic channels. Compaction is shown to result from accumulation of NC at one or few compaction sites, which leads to small dsDNA condensates. NC preferentially initiates compaction at flexible regions along the dsDNA, such as AT-rich regions and DNA ends. Upon further NC binding, these condensates develop into a globular state containing the whole dsDNA molecule. These findings support NC\u27s role in viral dsDNA compaction within the mature HIV-1 capsid and suggest a possible scenario for the gradual dsDNA decondensation upon capsid uncoating and NC loss

    Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation

    No full text
    International audienceESCRT-III is required for lipid membrane remodeling in many cellular processes, from abscission to viral budding and multi-vesicular body biogenesis. However, how ESCRT-III polymerization generates membrane curvature remains debated. Here, we show that Snf7, the main component of ESCRT-III, polymerizes into spirals at the surface of lipid bilayers. When covering the entire membrane surface, these spirals stopped growing when densely packed: they had a polygonal shape, suggesting that lateral compression could deform them. We reasoned that Snf7 spirals could function as spiral springs. By measuring the polymerization energy and the rigidity of Snf7 filaments, we showed that they were deformed while growing in a confined area. Furthermore, we observed that the elastic expansion of compressed Snf7 spirals generated an area difference between the two sides of the membrane and thus curvature. This spring-like activity underlies the driving force by which ESCRT-III could mediate membrane deformation and fission

    Annealing of ssDNA and compaction of dsDNA by the HIV-1 nucleocapsid and Gag proteins visualized using nanofluidic channels

    Get PDF
    The nucleocapsid protein NC is a crucial component in the human immunodeficiency virus type 1 life cycle. It functions both in its processed mature form and as part of the polyprotein Gag that plays a key role in the formation of new viruses. NC can protect nucleic acids (NAs) from degradation by compacting them to a dense coil. Moreover, through its NA chaperone activity, NC can also promote the most stable conformation of NAs. Here, we explore the balance between these activities for NC and Gag by confining DNA-protein complexes in nanochannels. The chaperone activity is visualized as concatemerization and circularization of long DNA via annealing of short single-stranded DNA overhangs. The first ten amino acids of NC are important for the chaperone activity that is almost completely absent for Gag. Gag condenses DNA more efficiently than mature NC, suggesting that additional residues of Gag are involved. Importantly, this is the first single DNA molecule study of full-length Gag and we reveal important differences to the truncated Δ-p6 Gag that has been used before. In addition, the study also highlights how nanochannels can be used to study reactions on ends of long single DNA molecules, which is not trivial with competing single DNA molecule techniques
    • …
    corecore