1,707 research outputs found

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of \sim1.3 μ\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa

    IC 4200: a gas-rich early-type galaxy formed via a major merger

    Full text link
    We present the result of radio and optical observations of the S0 galaxy IC 4200. We find that the galaxy hosts 8.5 billion solar masses of HI rotating on a ~90 deg warped disk extended out to 60 kpc from the centre of the galaxy. Optical spectroscopy reveals a simple-stellar-population-equivalent age of 1.5 Gyr in the centre of the galaxy and V- and R-band images show stellar shells. Ionised gas is observed within the stellar body and is kinematically decoupled from the stars and characterised by LINER-like line ratios.We interpret these observational results as evidence for a major merger origin of IC 4200, and date the merger back to 1-3 Gyr ago.Comment: Accepted for publication in Astronomy & Astrophysics; 18 pages, 13 figures; the tables of Appendix C can be downloaded at http://www.astro.rug.nl/~pserra/IC420

    Optical Spectral Singularities and Coherent Perfect Absorption in a Two-Layer Spherical Medium

    Get PDF
    An optical spectral singularity is a zero-width resonance that corresponds to lasing at threshold gain. Its time-reversal causes coherent perfect absorption of light and forms the theoretical basis of antilasing. In this article we explore optical spectral singularities of a two-layer spherical medium. In particular, we examine the cases that a gain medium is coated by a thin layer of high-refractive index glass and a spherical glass covered by a layer of gain material. In the former case, the coating reduces the minimum radius required for exciting spectral singularities and gives rise to the formation of clusters of spectral singularities separated by wide spectral gaps. In the latter case, the coating leads to a doubling of the number of spectral singularities.Comment: 19 pages, 1 table, 10 figures, accepted for publication in Proc. R. Soc.

    Large-scale HI in nearby radio galaxies: segregation in neutral gas content with radio source size

    Get PDF
    We present results of a study of neutral hydrogen (HI) in a complete sample of nearby non-cluster radio galaxies. We find that radio galaxies with large amounts of extended HI (M_HI >= 10^9 M_solar) all have a compact radio source. The host galaxies of the more extended radio sources, all of Fanaroff & Riley type-I, do not contain these amounts of HI. We discuss several possible explanations for this segregation. The large-scale HI is mainly distributed in disk- and ring-like structures with sizes up to 190 kpc and masses up to 2 x 10^10 M_solar. The formation of these structures could be related to past merger events, although in some cases it may also be consistent with a cold-accretion scenario.Comment: 4 pages, 2 figures. Accepted for publication in A&A Letters. A version with full resolution figures can be found at http://www.astro.rug.nl/~emonts/emonts_HIletter_jan07.pd

    The Kinematic Properties of the Extended Disks of Spiral Galaxies: A Sample of Edge-On Galaxies

    Full text link
    We present a kinematic study of the outer regions (R_25<R<2 R_25) of 17 edge-on disk galaxies. Using deep long-slit spectroscopy (flux sensitivity a few 10^-19 erg s^-1 cm^-2 arcsec^-2), we search for H-alpha emission, which must be emitted at these flux levels by any accumulation of hydrogen due to the presence of the extragalactic UV background and any other, local source of UV flux. We present results from the individual galaxy spectra and a stacked composite. We detect H-alpha in many cases well beyond R_25 and sometimes as far as 2 R_25. The combination of sensitivity, spatial resolution, and kinematic resolution of this technique thus provides a powerful complement to 21-cm observations. Kinematics in the outer disk are generally disk-like (flat rotation curves, small velocity dispersions) at all radii, and there is no evidence for a change in the velocity dispersion with radius. We place strong limits, few percent, on the existence of counter-rotating gas out to 1.5 R_25. These results suggest that thin disks extend well beyond R_25; however, we also find a few puzzling anomalies. In ESO 323-G033 we find two emission regions that have velocities close to the systemic velocity rather than the expected rotation velocity. These low relative velocities are unlikely to be simply due to projection effects and so suggest that these regions are not on disk-plane, circular orbits. In MCG-01-31-002 we find emission from gas with a large velocity dispersion that is co-rotating with the inner disk.Comment: 18 pages, 14 figures, accepted for publication in Ap

    Infrared dust emission in the outer disk of M51

    Get PDF
    We examine faint infrared emission features detected in Spitzer Space Telescope images of M51, which are associated with atomic hydrogen in the outer disk and tidal tail at R greater than R_25 (4.9', ~14 kpc at d=9.6 Mpc). The infrared colors of these features are consistent with the colors of dust associated with star formation in the bright disk. However, the star formation efficiency (as a ratio of star formation rate to neutral gas mass) implied in the outer disk is lower than that in the bright disk of M51 by an order of magnitude, assuming a similar relationship between infrared emission and star formation rate in the inner and outer disks.Comment: 13 pages in manuscript form, 2 figures; download PDF of manuscript with original-resolution Figure 1 at http://www.eg.bucknell.edu/physics/thornley/thornleym51.pd

    Vacuum friction in rotating particles

    Get PDF
    We study the frictional torque acting on particles rotating in empty space. At zero temperature, vacuum friction transforms mechanical energy into light emission and produces particle heating. However, particle cooling relative to the environment occurs at finite temperatures and low rotation velocities. Radiation emission is boosted and its spectrum significantly departed from a hot-body emission profile as the velocity increases. Stopping times ranging from hours to billions of years are predicted for materials, particle sizes, and temperatures accessible to experiment. Implications for the behavior of cosmic dust are discussed.Comment: 4 figures, 10 pages, includes paper and supplementary information in the appendi

    From gas to galaxies

    Full text link
    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes. In deep surveys SKA will be able to detect HI in emission out to redshifts of z2.5z \approx 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars. These and other aspects of SKA imaging of galaxies will be discussed.Comment: To be published in New Astronomy Reviews, Elsevier, Amsterdam as part of "Science with the Square Kilometre Array", eds. C. Carilli and S. Rawlings. 18 pages + 13 figures; high resolution version and other chapters of "Science with the Square Kilometre Array" available at http://www.skatelescope.org/pages/science_gen.ht

    Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina

    Full text link
    Bidirectional reflectance of a surface is defined as the ratio of the scattered radiation at the detector to the incident irradiance as a function of geometry. The accurate knowledge of the bidirectional reflection function (BRF) of layers composed of discrete, randomly positioned scattering particles is very essential for many remote sensing, engineering, biophysical applications and in different areas of Astrophysics. The computations of BRF's for plane parallel particulate layers are usually reduced to solve the radiative transfer equation (RTE) by the existing techniques. In this work we present our laboratory data on bidirectional reflectance versus phase angle for two sample sizes of 0.3 and 1 μm\mu m of Alumina for the He-Ne laser at 632.8 nm (red) and 543.5nm(green) wavelength. The nature of the phase curves of the asteroids depends on the parameters like- particle size, composition, porosity, roughness etc. In our present work we analyse the data which are being generated using single scattering phase function i.e. Mie theory considering particles to be compact sphere. The well known Hapke formula will be considered along with different particle phase function such as Mie and Henyey Greenstein etc to model the laboratory data obtained at the asteroid laboratory of Assam University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the Astronomical Society of Australia (PASA) on 8 June, 2011
    corecore