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Optical spectral singularities and coherent
perfect absorption in a two-layer

spherical medium
BY ALI MOSTAFAZADEH* AND MUSTAFA SARISAMAN

Department of Mathematics, Koç University, 34450 Sarıyer, Istanbul, Turkey

An optical spectral singularity is a zero-width resonance that corresponds to lasing at
threshold gain. Its time-reversal causes coherent perfect absorption of light and forms
the theoretical basis of antilasing. In this article, we explore optical spectral singularities
of a two-layer spherical medium. In particular, we examine the cases that a gain medium
is coated by a thin layer of high-refractive index glass and a spherical glass covered by
a layer of gain material. In the former case, the coating reduces the minimum radius
required for exciting spectral singularities and gives rise to the formation of clusters of
spectral singularities separated by wide spectral gaps. In the latter case, the coating leads
to a doubling of the number of spectral singularities.

Keywords: complex potential; spectral singularity; zero-width resonance; coated spherical
dye laser; coherent perfect absorption; antilaser

1. Introduction

The discovery (Mostafazadeh 2009a) that the mathematical concept of a
spectral singularity (Naimark 1954, for a recent review, see Guseinov 2009) has
physical realizations as zero-width resonances of complex scattering potentials
has motivated a detailed study of this phenomenon (Ahmed 2009; Longhi
2009; Mostafazadeh 2009b; Andrianov et al. 2010; Longhi 2010a,b,c, 2011a;
Mostafazadeh 2011a,b,c; Mostafazadeh & Sarisaman 2011; Samsonov 2011).
In particular, it is shown that optical spectral singularities (OSS) correspond to
the lasing at the threshold gain (Mostafazadeh 2011a) and that a time-reversed
OSS (Longhi 2010b,c, 2011a) yields a coherent perfect absorption (CPA) of light,
i.e. an antilasing (Chong et al. 2010; Longhi 2010c; Chong et al. 2011; Ge et al.
2011; Longhi 2011b; Wan et al. 2011).

Typical lasers are photonic devices consisting of an active medium placed
inside an optical cavity. A particularly interesting type of lasers are those
based on spherical granules where the surface of the sphere acts as the cavity
(Alexopoulos & Uzunoglu 1978; Kerker 1978; Benner et al. 1980; van de Hulst
1981; Bohren & Huffman 1983; Sandoghdar et al. 1996; Sasaki et al. 1997;
Gorodetsky & Ilchenko 1999; Takahashi et al. 1999; von Klitzing et al. 2001;
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Figure 1. Two-layer spherical gain medium. a1 and a2 are the inner and outer radii of the spherical
shell; n1 and n2 are the complex refractive indices of the inner core and the author shell, respectively.
(Online version in colour.)

Vahala 2003). These are characterized by their extremely high-quality factors
and small volumes of excitation. Owing to these properties, a spherical laser can
also be realized in which the active medium is located outside an spherical core
(Matsko et al. 2005; Matsko & Ilchenko 2006).

In Mostafazadeh & Sarisaman (2011), we studied the OSS of a uniform
spherical gain medium and showed for the radial (transverse) modes of a concrete
spherical dye laser that the emergence of an OSS puts a lower bound on the radius
of the gain medium. This is the minimum radius a(min) required for lasing in these
modes. In the present article, we examine OSS and CPA for an active medium
consisting of a spherical inner core and a spherical outer shell with different
refractive indices, as shown in figure 1. In particular, we wish to explore the
prospects of reducing the value of a(min) by means of coating the spherical gain
medium by a material with higher refractive index.1

2. Radial transverse spherical electromagnetic waves

Consider an optically active material with an inner spherical core of radius
a1 and an outer spherical shell of thickness a2 − a1 placed in a vacuum. Let
n1 and n2 denote the complex refractive indices of the inner core and the
outer shell, respectively, and suppose that they are independent of space and
time. The electromagnetic (EM) waves interacting with this system satisfy the
Maxwell equations:

V · D = 0, V · B = 0, (2.1)

and

V × E + Ḃ = 0, V × H − Ḋ = 0, (2.2)

1It is well-known that the presence of such a coating increases the system’s quality factor (Matsko
et al. 2005; Sandberg et al. 2005; Matsko & Ilchenko 2006; Eroglu 2011).
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where D := 30z(r)E, H := m−1
0 B, 30 and m0 are, respectively, the permeability and

permittivity of the vacuum, r := |r | is the radial spherical coordinate,

z(r) :=
⎧⎨
⎩

n2
1 for r < a1,

n2
2 for a1 ≤ r < a2,

1 for r ≥ a2,
(2.3)

and each over-dot represents a time-derivative. According to (2.2), the electric
field E = E(r , t) is a solution of the wave equation:

Ë(r , t) + U2E(r , t) = 0, r �= a1, a2, (2.4)

where U2 := c2z(r)−1V × V× and c = (30m0)−1/2 is the speed of light in vacuum.
For a time-harmonic EM field with angular frequency u that propagates in a

charge-free medium, we have E(r , t) = e−iutE(r), and (2.4) reduces to the time-
independent Schrödinger equation

−V2E(r) + v(r)E(r) = k2E(r), (2.5)

where k := u/c is the wavenumber and v is the complex barrier potential: v(r) :=
k2[1 − z(r)].2

Following the analysis of Mostafazadeh & Sarisaman (2011), we investigate
transverse radially propagating spherical solutions of (2.5) that have the form

E(r) = E(r)f̂. (2.6)

Here f̂ is the unit vector associated with the azimuthal angular coordinate f of
the spherical coordinate system. Inserting (2.6) in (2.5) yields[

d2

dr2
+ 2

r
d
dr

+ k2 − v(r) − 1
r2

]
E(r) = 0. (2.7)

For r < a1, a1 < r < a2 and r > a2, where v takes constant values, we can
transform (2.7) to the spherical Bessel equation of order n := √

5/2, (Jackson
1975). Therefore,

E(r) =

⎧⎪⎨
⎪⎩

A1jn(k1r) + B1nn(k1r) for r < a1,
A2jn(k2r) + B2nn(k2r) for a1 < r < a2,
A3h

(1)
n (kr) + B3h

(2)
n (kr) for r > a2,

(2.8)

where the Ai and Bi are constant numerical coefficients, jn, nn and h(i)
n are,

respectively, the spherical Bessel, Neumann and Hankel functions, and ki := nik
for i = 1, 2. Notice that the condition that the electric field be regular at the origin
implies that B1 = 0. Consequently, E(0) = 0.

2Note that (2.5) is nothing but the well-known Helmholtz equation, and the potential appearing
in it is energy-dependent. For the purposes of our investigation, this does not cause any difficulty.

Proc. R. Soc. A (2012)

 on January 9, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


Optical spectral singularities 3227

Having obtained the explicit form of the electric field, we can compute the
magnetic field using (2.2). This gives

B(r , t) = e−iutB(r)q̂, (2.9)

where q̂ is the unit vector associated with the spherical polar coordinate q,

B(r) := i u−1Ẽ(r) =

⎧⎪⎨
⎪⎩

i u−1[A1j̃n(k1r) + B1ñn(k1r)] for r < a1,
i u−1[A2j̃n(k2r) + B2ñn(k2r)] for a1 < r < a2,
i u−1[A3h̃

(1)
n (kr) + B3h̃

(2)
n (kr)] for r > a2,

(2.10)

and for each differentiable function f we define f̃ according to f̃ (r) := (d/dr +
1/r)f (r). Notice that for every pair of differentiable functions f , g : R

+ → R and
positive real numbers r , s ∈ R

+,

f (r)g̃(s) − g(s)f̃ (r) = f (r)g ′(s) − g(s)f ′(r). (2.11)

Because this quantity will frequently appear in our calculations, we denote it by
f (r)

←→
v g(s) for brevity. In other words,

f (r)
←→
v g(s) := f (r)g ′(s) − g(s)f ′(r) = f (r)g̃(s) − g(s)f̃ (r). (2.12)

Recall that the Wronskian of f and g is given by W [f (r), g(r)] := f (r)
←→
v g(r).

Therefore,
f (r)g̃(r) − g(r)f̃ (r) = W [f (r), g(r)]. (2.13)

In order to relate the coefficients Aj and Bj appearing in (2.8), we need
to impose the appropriate matching conditions at the boundaries r = a1 and
r = a2, (Jackson 1975). For the system we consider, these correspond to the
condition that the parallel component of both the electric and magnetic fields
must be continuous at the boundaries. In view of (2.6) and (2.9), this means
that E = E(r) and B = B(r) must be continuous functions. We can satisfy this
condition provided that we select the coefficients Ai and Bi such that E and B
are continuous at r = a1 and r = a2. This gives

K11

[
A1
0

]
= K12

[
A2
B2

]
, K22

[
A2
B2

]
= L

[
A3
B3

]
, (2.14)

where for all p, q = 1, 2,

Kpq :=
[
jn(kqap) nn(kqap)
j̃n(kqap) ñn(kqap)

]
, L :=

[
h(1)

n (ka2) h(2)
n (ka2)

h̃(1)
n (ka2) h̃(2)

n (ka2)

]
. (2.15)

According to these equations and (2.13),

det(Kpq) = W [jn(x), nn(x)]∣∣x=kqap
= (kqap)−2 �= 0 (2.16)

and
det(L) = W [h(1)

n (x), h(2)
n (x)]∣∣x=ka2

= −i(ka2)−2 �= 0. (2.17)

The fact that these quantities do not vanish was to be expected, because
(jn, nn) and (h(1), h(2)) are pairs of linearly independent solutions of a second-
order homogeneous linear differential equation. Equations (2.16) and (2.17) imply
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that Kpq and L are invertible matrices. We can use their inverse together with
equation (2.14) and the fact that A1 �= 0, to express A3 and B3 in terms of
A1 according to A3 = M11A1 and B3 = M21A1, where Mij are the entries of the
transfer matrix

M := L−1K22K−1
12 K11. (2.18)

3. Optical spectral singularities and coherent perfect absorption for radial
transverse spherical waves

As discussed in Mostafazadeh & Sarisaman (2011), we can easily exploit the
asymptotic properties of the spherical Hankel functions to infer that the reflection
amplitude of our system is given by

R := A3

B3
= M11

M21
. (3.1)

Therefore, in order to characterize OSS and CPA that correspond to the real
poles and zeros of R, we only need to calculate M11 and M21. Using (2.11), (2.16),
(2.17), (2.12), (2.15), (2.18) and doing the necessary algebra, we obtain

M11 = N2, M21 = −N1, (3.2)

where for both � = 1, 2,

N� := P[nn(k2a2)
←→
v h(�)

n (ka2)] + Q[jn(k2a2)
←→
v h(�)

n (ka2)] (3.3)

and

P := i(kk2a1a2)2jn(k2a1)
←→
v jn(k1a1), Q := i(kk2a1a2)2jn(k1a1)

←→
v nn(k2a1). (3.4)

In view of (3.2)–(3.4) and the fact that f
←→
v g = −g

←→
v f , we can express (3.1) in

the form

R = −
[jn(k2a1)

←→
v jn(k1a1)][nn(k2a2)

←→
v h(2)

n (ka2)]
−[nn(k2a1)

←→
v jn(k1a1)][jn(k2a2)

←→
v h(2)

n (ka2)]
[jn(k2a1)

←→
v jn(k1a1)][nn(k2a2)

←→
v h(1)

n (ka2)]
−[nn(k2a1)

←→
v jn(k1a1)][jn(k2a2)

←→
v h(1)

n (ka2)]

.

Equations (3.2) provide a simple demonstration of the fact that CPA
corresponds to an OSS of the time-reversed system. To see this, we recall that
we can obtain the time-reversed system by complex-conjugating the refractive
indices n�. This implies

k� → k∗
� , P → P∗, Q → Q∗, N1 → N ∗

2 , N2 → N ∗
1 (3.5)

and

M11 → −M ∗
21, M21 → −M ∗

11, R → 1
R∗ , (3.6)

where we have used (3.3), (3.4), (3.2), (3.1) and the fact that h(1)
n (ka2)∗ = h(2)

n (ka2).
According to the last relation in (3.6), a CPA, that corresponds to R = 0, appears
if and only if the reflection coefficient of the time-reversed system diverges, i.e.
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the latter develops an OSS and begins lasing at the threshold gain. Therefore,
in the following, we only consider the problem of locating OSS. We can easily
obtain the values of the physical parameters leading to a CPA of the spherical
waves we consider by complex-conjugating the refractive indices n1 and n2 or
changing the sign of the gain/attenuation coefficients of both the layers.

A straightforward consequence of this observation is the fact that because the
law of energy conservation prohibits the emergence of an OSS for the case that
both the interior core and the outer shell of our system consist of lossy material,
a CPA cannot be realized unless either the core or the outer shell includes a lossy
medium. Furthermore, it is possible to generate both a CPA and an OSS, if our
system involves both lossy and gain media.

In order to determine the location of OSS in the space of the physical
parameters of the system, we study the real zeros of M21 or alternatively N1
in the complex k-plane. In view of (3.3) and (3.4), this is equivalent to finding
the real values of k fulfilling

[jn(k2a1)
←→
v jn(k1a1)][nn(k2a1)

←→
v h(1)

n (ka2)]
= [nn(k2a1)

←→
v jn(k1a1)][jn(k2a1)

←→
v h(1)

n (ka2)]. (3.7)

Noting that ki = nik, this is a complex transcendental equation involving two
complex variables, namely n1 and n2, and two (positive) real variables: x1 := ka1
and x2 := ka2.

For a1 = a2 and n1 = n2 that corresponds to a homogeneous spherical medium
that we consider in Mostafazadeh & Sarisaman (2011), the first factor on the
left-hand side of (3.7) vanished identically and the first factor on its right-hand
side becomes W [nn(x), jn(x)] with x = k1a1 = x1n1. Because the latter is non-zero,
(3.7) reduces to

jn(k1a1)
←→
v h(1)

n (ka1) = 0. (3.8)

We can use the identity

u′
n(Z) = nun−1(Z) − (n + 1)un+1(Z)

2n + 1
, (3.9)

to express the derivative of the spherical Bessel, Neumann and Hankel functions.
Doing this in (3.8) gives rise to the equation for the spectral singularities
of a spherical gain medium that we derive in Mostafazadeh & Sarisaman
(2011), namely

d
dr

ln h(1)
n (kr)

∣∣∣∣
r=a1

= d
dr

ln jn(k1r)
∣∣∣∣
r=a1

. (3.10)

Employing the identity (3.9) in (3.7) gives a more lengthy equation for OSS
that we use in our numerical and graphical investigations. Before reporting the
results of this investigation, however, we will carry out a perturbative analysis of
(3.7). Similarly to the single-layer spherical medium, we studied in Mostafazadeh
& Sarisaman (2011), this turns out to reveal some basic properties of the solutions.
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4. Perturbative analysis of optical spectral singularities

Consider the Mie regime where a2 ≥ a1 � 2p/k =: l and |ni| < 4. Then x2 ≥ x1 � 1,
|kia1| = |ni|x1 = 2p|ni|a1/l � 1, and we can perform a large-x1 (and -x2) expansion
of the terms appearing in (3.7). This requires using the following asymptotic
expansions of the spherical Bessel, Neumann and Hankel functions.

jn(Z) = sin(Z − pn/2)
Z

∞∑
s=0

(−1)sA2s(n)
Z2s

+ cos(Z − pn/2)
Z

∞∑
s=0

(−1)sA2s+1(n)
Z2s+1

,

(4.1)

nn(Z) = −cos(Z − pn/2)
Z

∞∑
s=0

(−1)sA2s(n)
Z2s

+ sin(z − pn/2)
Z

∞∑
s=0

(−1)sA2s+1(n)
Z2s+1

(4.2)

and h(�)
n (Z) = e−i(−1)�(Z−pn/2)

Z

[
i(−1)�

∞∑
s=0

(−)sA2s(n)
Z2s

+
∞∑

s=0

(−1)sA2s+1(n)
Z2s+1

]
,

(4.3)

where

Ak(n) := G(n + k + 1)
2kk!G(n − k + 1)

=
∏2k−1

�=0 (n + k − �)
2kk! ,

and G stands for the Gamma function.
Substituting (4.1)–(4.3) in (3.7), neglecting the quadratic and higher order

terms in x−1
1 and x−1

2 in the resulting equation, noting that A0(n) = 1 and A1(n) =
n(n + 1)/2, and introducing

t� := tan
(
k�a1 − pn

2

)
= tan

(
x1n� − pn

2

)
(4.4)

and

F (x1, n1, n2) := n1(n2 + it2) + n2t1(n2t2 − i)
n1(i − n2t2) + n2t1(n2 + it2)

, (4.5)

we find
tan

(
x2n2 − pn

2

)
≈ F (x1, n1, n2), (4.6)

where we use ‘≈’ to indicate that this equation is obtained by employing first-
order perturbation theory. Solving (4.6) for x2 yields

x2 ≈ pn + 2 tan−1(F )
2n2

= 1
2n2

[
p(2m + n) − i ln

(
1 + iF
1 − iF

)]
, (4.7)

where we have used ‘ln’ to denote the principal part of natural logarithm of its
argument, suppressed the argument of F for brevity, and employed the identity

tan−1(Z) = pm + 1
2i

ln
(

1 + iZ
1 − iZ

)
, m = 0, ±1, ±2, . . . . (4.8)

The parameter m appearing in (4.7) is an integer that we identify with a mode
number labelling OSS.
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For a homogeneous spherical medium, where a1 = a2 and n1 = n2, we have x1 =
x2, F = −in1 and (4.7) gives

x1 ≈ 1
2n1

[
p(2m + n + 1) − i ln

(
n1 + 1
n1 − 1

)]
. (4.9)

This is in complete agreement with equation (3.5) of Mostafazadeh &
Sarisaman (2011).

Because the left-hand side of (4.7) is real, we can express this complex equation
as a pair of real equations

x2 − Re
{

1
2n2

[
p(2m + n) − i ln

(
1 + iF
1 − iF

)]}
≈ 0 (4.10)

and

Im
{

1
n2

[
p(2m + n) − i ln

(
1 + iF
1 − iF

)]}
≈ 0. (4.11)

We also note that

1 + iF
1 − iF = (n2t1 + in1)(1 + it2)(n2 + 1)

(n2t1 − in1)(1 − it2)(n2 − 1)
. (4.12)

Next, we consider the special case of a coated spherical active medium with
a2 − a1 � a1. In this case, the gain/absorption properties of the coating can be
neglected and n2 may be assumed to take a real value that we label by n2. This
implies the equivalence of (4.11) and the condition that the absolute value of
(4.12) must be unity. Imposing this condition and noting that in this case t2 is
also real, we find ∣∣∣∣n2t1 + in1

n2t1 − in1

∣∣∣∣ ≈ |n2 − 1|
n2 + 1

. (4.13)

This is a real equation involving a complex variable, n1, and two real variables,
n2 and x1. In particular, it does not involve the mode number m.

In order to use (4.13) for locating OSS, we express n1 and t1 in terms of their
real and imaginary parts. Let h1 and k1 denote the real and imaginary parts of
n1, so that

n1 = h1 + ik1, (4.14)

and introduce

a := x1h1 − pn

2
= ka1h1 − pn

2
= 2p

(a1h1

l
− n

4

)
,

b := x1k1 = ka1k1 = 2pa1k1

l
. (4.15)

Then substituting (4.14) in (4.4) gives

t1 = tan(a + ib) = tan a + i tanh b

1 − i tan a tanh b
. (4.16)
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Next, we use (4.14), (4.16) and various trigonometric and hyperbolic identities
to obtain the following explicit form of (4.13).

h1 sinh(2b) − k1 sin(2a) +
(

h2
1 + k2

1 + n2
2

n2
2 + 1

)
cosh(2b)

+
(

h2
1 + k2

1 − n2
2

n2
2 + 1

)
cos(2a) ≈ 0. (4.17)

A similar analysis reveals the fact that the following quantity is an integer.

m̃ := g − p−1arg
(

1 + iF
1 − iF

)
, (4.18)

where

g := 4a1n2

l
+ x − n (4.19)

and

x := p−1 arctan
{

2n2[h1 sin(2a) + k1 sinh(2b)]
[n2

2 − (h2
1 + k2

1)] cosh(2b) − [n2
2 + h2

1 + k2
1] cos(2a)

}
, (4.20)

and ‘arg(z)’ denotes the principal argument of z that takes values in (−p, p]. The
latter implies that m̃ is one of the two integers satisfying the condition:

g − 1 ≤ m̃ < g + 1. (4.21)

A more important implication of (4.18) is that it leads to the following explicit
form of (4.10).

a2 − a1 ≈ a0 + l(2m − m̃)
4n2

, (4.22)

where

a0 := lx

4n2
. (4.23)

Note that the ‘arctan’ appearing in (4.20) stands for the principal value of ‘tan−1’
that takes values in [−p/2, p/2]. This in particular implies that |x| ≤ 1

2 . Therefore,

|a0| ≤ l

8n2
. (4.24)

Another useful relation that follows from (4.19), (4.20) and (4.23) is

g = 4n2(a1 + a0)
l

− n. (4.25)

Equation (4.22) is quite remarkable, for it indicates that if we choose h1, k1, n2
and x1 = 2pa1/l, so that x1 � 1 and (4.17) holds, then an OSS arises for a discrete
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set of values of the thickness of the coating. Because 2m − m̃ is an integer,
according to (4.22) and (4.24),

2m � m̃ ≥ g − 1, a2 − a1 � l

8n2
. (4.26)

This means that the mode number m and the thickness a2 − a1 are bounded
from below by (g − 1)/2 and l/(8n2), respectively. Notice that these bounds only
depend on a1, l and n2.

Next, we examine the physical implications of (4.17) for a typical optically
active material that satisfies

|k1| � |b| � h1 � a. (4.27)

In this case, we can ignore the terms of order two and higher in k1 and b in
our calculations. Implementing this approximation in (4.17), using (4.15), and
recalling that the imaginary part of n1, i.e. k1 is related to the gain coefficient g
via k1 = −gl/(4p), we find

a1g ≈ h2
1 + n2

2 + (h2
1 − n2

2) cos(2a)
h1(n2

2 + 1)
. (4.28)

This relation shows that the radius a1 of the inner core is inversely proportional
to the gain coefficient. Furthermore, it puts curious upper and lower bounds on
the possible values of a1 that are only sensitive to the gain coefficient and the
real part of the refractive indices of the inner core and the outer shell:

2n2
min

h1g(n2
2 + 1)

� a1 � 2n2
max

h1g(n2
2 + 1)

, (4.29)

where nmax and nmin are, respectively, the largest and smallest of h1 and n2.
In view of (4.29), the larger n2 is, the smaller the lower bound of a1 gets. This

confirms our expectation that coating a spherical gain medium by a material with
higher refractive index reduces the lower bound on the radius of the gain medium.
For example, if we take n2 = 2.5 and choose the inner core to be made of a dye
gain material with h1 ≈ 1.48 and g ≈ 5 cm−1, we find

0.816 mm � a1 � 2.330 mm. (4.30)

Finally, we explore the consequences of (4.27). Implementing the above
approximation scheme of neglecting second and higher order terms in b and k1
in (4.22) yields

a0 ≈ l

4pn2
arctan

{
2h1n2 sin(2a)

n2
2 − h2

1 − (h2
1 + n2

2) cos(2a)

}
. (4.31)

Taking a1 = 1 mm to comply with (4.30), choosing l = 549 nm, h1 ≈ 1.48 and
n2 = 2.5 as above, and using (4.22), (4.19), (4.21), (4.26) and (4.31), we find

a2 − a1 ≈ [55 (2m − m̃) + 27] nm, m̃ ≈ g = 18122. (4.32)

The smallest allowed value of the thickness is therefore a2 − a1 ≈ a0 = 27 nm.
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In practice, the thickness of the coating has a fixed value, and (4.31) and (4.32)
determine an approximate value of the mode number m:

m ≈ 2n2(a2 − a1 − a0)
l

+ m̃
2

. (4.33)

If we further approximate m̃ by g and use the expression (4.25) for the latter,
then (4.33) gives

m ≈ 2n2a2

l
− n

2
. (4.34)

For example, for a2 − a1 = 5 mm, this relation gives m ≈ 9152, which coincides
with the numerical result obtained directly from (4.10).

We can also use (4.34) to express the wavelength of the OSS in terms of the
mode number. This gives

l ≈ 4n2a2

2m + n
. (4.35)

The analogous expression for the case that we remove the coating is given by
eqn (33) of Mostafazadeh & Sarisaman (2011) and reads

l ≈ 4h1a1

2m + n + 1
≈ 4h1a1

2m + n
. (4.36)

Comparing (4.35) with (4.36) and noting that n2a2 > h1a1, we can see that the
presence of the coating increases the wavelength of the OSS associated for each
mode number. Alternatively, it increases the value of the mode number for an
OSS of a given wavelength.

We conclude this section by pointing out that we can perform a perturbative
calculation of OSS in a way that avoids the explicit appearance of the mode
number m. According to (4.22) and (4.23), tan[4pn2(a2 − a1)/l] = tan(px).
In light of (4.20), we can easily compute tan(px) and express the latter equation
in the form

{(n2
2 + h1 + k1) cos(2a) − (n2

2 − h1 − k1) cosh(2b)} sin[4pn2l−1(a2 − a1)]
+ 2n2{h1 sin(2a) + k1 sinh(2b)} cos[4pn2l−1(a2 − a1)] = 0. (4.37)

In summary, we have obtained the real equations (4.17) and (4.37) by imposing
the complex equation (4.6). We derived the latter by performing first-order
perturbation theory on (3.7) that determined OSS. It is important to note that
every solution of (4.6) is a solution of (4.17) and (4.37), but the converse may
not be true. We have checked for some concrete examples and found that indeed
this is the case. Therefore, we solve (4.17) and (4.37) by fixing all but two of the
real parameters entering in these equations and then eliminate the solutions that
violate (4.6).

5. Optical spectral singularities of a concrete two-layer spherical medium

In general, the refractive index n of an optically active medium depends on
the properties of the medium and the wavelength of the propagating EM wave.
For example, for a gain medium that is obtained by doping a host medium of
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refraction index n0 and modelled by a two-level atomic system with lower and
upper level population densities Nl and Nu, resonance frequency u0 and damping
coefficient g, it satisfies the dispersion relation (Mostafazadeh 2011a):

n
2 = n2

0 − û2
p

û2 − 1 + iĝû
, (5.1)

where û := u/u0, ĝ := g/u0, ûp := (Nl − Nu)e2/(me30u2
0), e is the electron’s

charge, and me is its mass. We can express û2
p in terms of the imaginary part k0 of

n at the resonance wavelength l0 := 2pc/u0 according to Mostafazadeh (2011a)

û2
p ≈ 2n0ĝk0, (5.2)

where the approximation symbol means that we neglect quadratic and higher
order terms in k0.

Inserting (5.2) in (5.1) and using n = h + ik, we obtain

h ≈ n0 + k0f1(û), k ≈ k0f2(û), (5.3)

where

f1(û) := ĝ(1 − û2)
(1 − û2)2 + ĝ2û2

, f2(û) := ĝ2û

(1 − û2)2 + ĝ2û2
. (5.4)

We also note that the gain coefficient of such a medium is given by g = −4pk/l.
In particular, we can use this relation to express k0 in terms of the gain coefficient
g0 at the resonance wavelength l0 according to

k0 = −l0g0

4p
. (5.5)

In the following, we employ (5.3)–(5.5) to parameterize the refractive indices n1
and n2 that enter in the description of our two-layer spherical model.

In order to explore the effect of the outer shell on the behaviour of spectral
singularities, we consider a spherical dye laser medium confined in a thin spherical
shell of higher refractive index glass. We suppose that the refractive index
of the glass takes a constant real value and parameterize the location of the
spectral singularities using the resonance gain coefficient, g0, of the dye and the
wavelength l.

Consider confining a Rose Bengal-dimethyl sulphoxide (DMSO) solution with
characteristics (Silfvast 1996; Nooraldeen et al. 2009)

n0 = 1.479, l0 = 549 nm, ĝ = 0.062, g0 ≤ 5 cm−1, (5.6)

in a spherical glass shell of outer radius a2 = 1 mm, thickness a2 − a1 = 5 mm and
refractive index n2 = 2.5.3 Figure 2 and table 1 show the results of our numerical
calculation of the location of spectral singularities that use (3.7).

Table 1 also gives the results of our perturbative calculations and demonstrates
their good agreement with the numerical results.

Let g(1)
0 denote the smallest value of the gain coefficient g0 that is capable

of producing an OSS, and l(1) be the wavelength of this OSS. We recall from
3For the details of developing such a high-refractive index glass, see Arai et al. (2003) and Shibata
et al. (2006).
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Figure 2. Spectral singularities of the Rose Bengal-DMSO dye gain medium (5.6) confined in a
spherical glass shell of outer radius 1 mm, thickness 5 mm and refractive index 2.5. The minimum
corresponds to l = l(1) ≈ 549.459 nm that is larger than the resonance wavelength l0 = 549 nm. The
grey horizontal line represents the experimental upper bound on g0.

Table 1. The mode number m, gain coefficient g0 and wavelength l(�) for the spectral singularities
of the Rose Bengal-DMSO dye gain medium (5.6) confined in a spherical glass shell of outer radius
1 mm, thickness 5 mm and refractive index 2.5. The subscripts ‘exact’ and ‘pert’. refer to the results
of numerical and perturbative calculations, respectively. These calculations give the same values
for g0 up to six significant figures.

� m g(�)
0 (cm−1) l

(�)
pert.(nm) l

(�)
exact(nm)

1 9099 4.8520 549.458833 549.458836
2 9101 4.8523 549.356779 549.356781
3 9098 4.8561 549.560925 549.560927
4 9103 4.8571 549.254762 549.254765
5 9096 4.8647 549.663054 549.663056
6 9104 4.8664 549.152785 549.152787
7 9094 4.8779 549.765220 549.765222

Mostafazadeh & Sarisaman (2011) that in the absence of coating l(1) is essentially
identical with the resonance wavelength l0. According to figure 2 and table 1, the
presence of the glass coating causes l(1) to be slightly red-shifted.

Figure 3 shows a logarithmic plot of the reflection coefficient as a function of
the wavelength for the sample considered in figure 2 and table 1 with g0 = g(3)

0 =
4.85614735 cm−1. In this case, there is an OSS at l = l(3) = 549.56092702 nm that
corresponds to the central peak in figure 3. Unlike the other peaks shown in this
figure, the height of the central peak increases indefinitely as we use more and
more accurate numerical values for the parameters of the system. This is a clear
indication that it corresponds to a spectral singularity.

Next, we explore the effect of changing the thickness of coating a2 − a1 on the
l(1) while keeping the inner radius fixed. Figure 4 shows the graph of l(1) as a
function of thickness. As seen from this figure, as we increase the thickness, l(1)

undergos an infinite set of jumps that oscillate about the resonance wavelength
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Figure 3. Graph of reflection coefficient for the outer radius of 1 mm and thickness of 5 mm when
the gain coefficient is g(3)

0 = 4.85614735 cm−1. The central peak represents an OSS. (Online version
in colour.)
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Figure 4. Graph of the wavelength l(1) as a function of the thickness of coating. The inner radius
is held at a1 = 1.6 mm. As we change the thickness, l(1) undergoes an infinite set of jumps that
oscillate about l0 with a decreasing amplitude. (Online version in colour.)

l0 with a decreasing amplitude. Our numerical results show that unlike the
wavelength l(1), the gain coefficient g(1)

0 does not experience a noticeable change
owing to an increase in the thickness.

Figure 5 shows the location of OSS for a spherical dye gain medium
without a coating. Comparing this figure with figure 2, we see that except
for the shift in the value of l(1), the distribution of the OSS in the l − g0
plane does not seem to get affected by the presence of the coating glass.
Exploring a wider range of values of l and g0 reveals a different picture.
Figures 6 and 7 show the location of OSS in a wider spectral range for
a coated spherical Rose Bengal-DMSO sample with specifics (5.6), inner
radius 1.5 mm, and two different values of the coating thickness, namely 5
and 10 mm. As these figures show, OSS are located on curves with multiple
local minima. The number of these minima that fulfill the experimental
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Figure 5. OSS of an uncoated spherical Rose Bengal-DMSO dye gain medium with specifications
(5.6) and radius 3.3 mm. The minimum gain coefficient necessary for generating an OSS and
the corresponding wavelength are, respectively, 4.9815 cm−1 and 549.008 nm. The horizontal
grey line represents the experimental upper bound on g0. There are 66 OSS complying with
this bound.
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Figure 6. OSS of a coated spherical Rose Bengal-DMSO dye gain medium with specifications (5.6),
inner radius 1.5 mm and coating thickness 5 mm. The horizontal line represents the experimental
upper bound on g0. There are three groups of OSS below this bound. They appear in the spectral
ranges 536.941436–539.544783, 546.335226–552.571190 and 560.400334–561.815048 nm and contain
41, 93 and 21 members, respectively.

upper bound of g0 ≤ 5 cm−1 is an increasing function of the thickness of the
coating. For a2 − a1 = 5 mm (figure 6), this number is three, i.e. there are three
distinct groups of OSS satisfying the bound: g0 ≤ 5 cm−1. These appear in the
spectral ranges 536.941436–539.544783, 546.335226–552.571190 and 560.400334–
561.815048 nm and, respectively, contain 41, 93 and 21 members. Their central
member that corresponds to the smallest gain coefficient appear at (l, g0) =
(538.239847, 4.601744), (549.435560, 3.218290) and (561.106835, 4.895167) in
(nm, cm−1) units. For a2 − a1 = 10 mm (figure 7), there are four groups of OSS
satisfying the bound on g0. They include 34, 47, 46 and 30 members with
wavelengths ranging over 539.621948–541.782279 nm, 544.992898–548.067753 nm,
550.878022–553.951299 nm and 557.516880–559.542755 nm, respectively. The
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Figure 7. OSS of a coated spherical Rose Bengal-DMSO dye gain medium with specifications
(5.6), inner radius 1.5 mm and coating thickness 10 mm. There are four groups of OSS fulfilling
the experimental upper bound on g0 (the horizontal line.) They appear in the spectral
ranges 539.621948–541.782279, 544.992898-548.067753, 550.878022–553.951299 and 557.516880–
559.542755 nm and contain 34, 47, 46 and 30 members, respectively.
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Figure 8. Graph of g0 as a function of the inner radius a1. The coating thickness is kept fixed
at 5 mm. Dashed line corresponds to the experimental bound g0 ≤ 5 cm−1. For g0 = 5 cm−1, the
smallest value of the inner radius that supports an OSS is about 960 mm. For larger values of a1,
there are OSS with g0 < 5 cm−1. (Online version in colour.)

central members of these four groups that correspond to the local
minima of g0 have (l, g0) values: (540.666848, 4.010267), (546.525852, 3.287748),
(552.444850, 3.348007) and (558.493430, 4.217539) in (nm, cm−1) units. In
particular, the presence of the glass coating not only allows for generating OSS in
a smaller gain medium, but it produces spectral gaps in the spectral range within
which these OSS are located. These remarkable observations should, in principle,
be verifiable experimentally.

Next, we study the effect of changing the radius of the inner core on the location
of OSS for a fixed value of the coating thickness. Figure 8 shows the graph of the
minimum gain coefficient g0 necessary for generating an OSS as a function of a1
for the coated spherical Rose Bengal-DMSO dye gain medium with specifications
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Figure 9. Effect of changing the inner radius on the wavelength l(1) for the coating thickness of
5 mm. The displayed dots correspond to increments of the radius a1 of 100 mm. For continuous
variations of the radius, these dots fluctuate around the line l(1) = 549.4 nm with a decreasing
amplitude as the gain coefficient increases.
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Figure 10. OSS for a double-layer sphere consisting of a glass core with refractive index n1 = 2.5
and an outer shell filled with a Rose Bengal-DMSO dye solution with specifics (5.6). The inner
and outer radii are taken as a1 = 2 mm and a2 = 5.3 mm. The grey line represents the experimental
upper bound on g0. There are 136 OSS fulfilling this bound. They are located in the spectral range:
547.969294–550.025813 nm. The OSS with minimum gain has coordinates l(1) = 549.001882 nm and
g(1)
0 = 4.981501 cm−1.

(5.6) and thickness 5 mm. For a1 ≤ a(min)
1 ≈ 0.96 mm, no OSS can be created.

Recalling that for an uncoated sample a(min)
1 ≈ 3.3 mm, this corresponds to a

threefold decrease in the size of the gain medium. As we increase a1 starting from
the critical value 0.96 mm, the minimum gain coefficient necessary for generating
an OSS, namely g(1)

0 decreases. Both of these observations are in agreement with
our perturbative results. Moreover, it turns out that for fixed values of the coating
thickness, the wavelength l(1) is not sensitive to the variations of the inner radius.
Figure 9 demonstrates this behaviour. As our perturbative treatment shows the
larger the refractive index of coating is the smaller the minimum radius a(min)

1
gets. For example, if we use a glass coating with the same thickness (5 mm) but
a slightly lower index of refraction, say n2 = 1.93 as in Shibata et al. (2006), the
value of a(min)

1 increases by a factor of 2 (to about 1.8 mm).
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We have also investigated the formation of OSS in a two-layer spherical model
in which the inner core is made of a higher refractive index glass and the
outer shell is filled with a dye gain material. Using the same glass and gain
material and taking the core radius to be 2 mm, we found that the minimum
shell thickness required for producing an OSS was about 3.28 mm. This coincides
with the minimum radius supporting an OSS for a sphere filled with the same
gain material. Figure 10 shows the location of OSS for the thickness of 3.3 mm
as given by (3.7). The main difference between this figure and figure 5 is that
the number of OSS has doubled. To our knowledge, this is the only effect of the
presence of the glass core. We also find that using a glass core with a lower index
of refraction does not have a sizable effect on the location and number of OSS.

6. Concluding remarks

A gain medium can emit EM waves provided that we adjust its parameters so
that an OSS is created. The time-reversal of this phenomenon corresponds to
the (coherent perfect) absorption of EM waves. This is the theoretical basis of
antilasing. The simplest example of a gain medium that is localized in space and
is capable of realizing an OSS is a spherical gain medium. It supports spectral
singularities in a radial transverse mode provided that its radius exceeds a critical
value a(min).

For the typical dye laser material that we consider in Mostafazadeh &
Sarisaman (2011), a(min) ≈ 3.28 mm. In practice, maintaining a uniform gain
coefficient within a spherical sample of this size can be difficult. The main
motivation for the current study is the idea that coating a spherical gain
medium by a high-refractive index material can reduce a(min). We have shown
by explicit perturbative and numerical calculations that this is actually the case.
In particular, coating a spherical active dye medium with a glass of thickness 5 mm
and index of refraction 2.5 reduces a(min) by about a factor of 3. Furthermore, we
have found that the presence of coating leads to a much richer structure as far
as the location of spectral singularities are concerned. In particular, the coating
causes a small shift in the wavelength of the spectral singularity that requires
the least amount of gain. More importantly, it produces a clustering of spectral
singularities into groups separated by sizable spectral gaps. This behaviour may
find an application in producing tunable lasers with rather wide spectral gaps.
Another interesting possibility is to generate laser pulses in different spectral
ranges by periodically altering the gain coefficients of the active core. For example,
as shown in figures 6 and 8, increasing the gain coefficient so that it passes one
or more of the local minima of the OSS curves leads to lasing in two or more
spectral ranges that are separated by gaps of several nanometres in width.4

If we use a glass spherical core and an active dye outer shell, the thickness of
the shell required to induce an OSS is about the a(min) for an uncoated spherical
4For an experimental realization of the OSSs that we have examined, one may try to use the
SHG of a diode-pumped Nd-YAG (continuous wave) laser at 532 nm wavelength in the plane-wave
configuration. To achieve reasonably uniform gain, one probably needs to use multiple pumping.
The details and a discussion of alternative pumping methods are beyond the scope of the present
paper and the expertise of the authors.
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gain medium consisting of the same dye. The presence of the glass core does
not seem to have a significant effect except for the doubling of the number of
spectral singularities. We plan to explore the reasons for this phenomenon in a
more general context.

The results we have reported apply for a transverse electromagnetic (TEM)
wave propagating in the radial direction. As we show in the appendix, we can
extend our investigation to study OSS for EM waves in the transverse electric
(TE) and transverse magnetic (TM) modes. It turns out that the results are
similar to those for the TEM mode. For example, the size of the a(min) remains
essentially the same.

The emergence of an optical spectral singularity is a common feature of any
lasing system. This includes typical coated or uncoated spherical lasers that can
be realized using much smaller, micrometre size dye samples (Datsuyk et al. 2005;
Shibata et al. 2006; Beltaos & Meldrum 2007; Dantham & Bisht 2009; Xiao et al.
2010). The reason is that these lasers involve exciting whispering gallery modes
(Matsko et al. 2005; Matsko & Ilchenko 2006). We intend to conduct a through
study of optical spectral singularities for whispering gallery modes.

We wish to express our gratitude to Ali Serpengüzel for reading the draft of this article and
making many useful comments and suggestions. This work has been supported by the Scientific and
Technological Research Council of Turkey (TÜBİTAK) in the framework of the project no. 110T611
and the Turkish Academy of Sciences (TÜBA).

Appendix

In this appendix, we extend our analysis of optical spectral singularities to the
general TE(�, m) and TM(�, m) modes of our two-layer spherical system.

We begin our treatment by writing the solutions of the Maxwell’s equations in
TE and TM modes of a spherical system as follows (Jackson 1975):

E = Z0

∑
�,m

[
i

kz(r)
aM (�, m)V × f�(k̃r)X�m + aE(�, m)g�(k̃r)X�m

]
(A 1)

and

H =
∑
�,m

[
aM (�, m)f�(k̃r)X�m − i

k
aE(�, m)V × g�(k̃r)X�m

]
, (A 2)

where � and m take integer values in ranges [0, ∞) and [−�, �], respectively, aE
and aM are the coefficients of TE and TM modes, respectively, Z0 := √

m0/e0 is the
impedance of the vacuum, z(r) is given in (2.3), both f�(k̃r) and g�(k̃r) have form:

f�(k̃r), g�(k̃r) =

⎧⎪⎨
⎪⎩

A1jn(k1r) + B1nn(k1r) for r < a1,
A2jn(k2r) + B2nn(k2r) for a1 < r < a2,
A3h

(1)
n (kr) + B3h

(2)
n (kr) for r > a2,

(A 3)
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X�m(q, f) := (1/
√

�(� + 1))LY�,m , L := −ir × V, Y�,m are spherical harmonics:

Y�,m(q, f) :=
√

2� + 1
4p

(� − m)!
(� + m)!P

m
� (cos q)eimf,

and Pm
� are the associated Legendre functions. Note that X�m fulfil the

orthogonality relations

∫
X∗

�′m′ .X�m dU = d��′dmm′ and
∫
X∗

�′m′ .(r × X�m) dU = 0,

where dU := sin q dq df, and being proportional to the angular momentum
operator, L satisfies L2Y�m = �(� + 1)Y�m .

Expressing the electric and magnetic fields in terms of their components in the
spherical coordinates, we have E = r̂Er(r , q, f) + q̂Eq(r , q, f) + f̂Ef(r , q, f) and
H = r̂Hr(r , q, f) + q̂Hq(r , q, f) + f̂Hf(r , q, f), where

Er = Z0

∑
�,m

aE(�, m)b(�, m)f�(k̃r)
krz(r)

[
vP�,m(q)

vq
− m2 U�,m(q)

sin q

]
eimf,

Eq = −Z0

∑
�,m

b(�, m)

[
aE(�, m)

kz(r)
vf�(k̃r)

vr
P�,m(q)

+ maM (�, m)g�(k̃r)U�,m(q)

]
eimf,

Ef = −iZ0

∑
�,m

b(�, m)

[
maE(�, m)

kz(r)
vf�(k̃r)

vr
U�,m(q)

+ aM (�, m)g�(k̃r)P�,m(q)

]
eimf,

Hr = −
∑
�,m

aM (�, m)b(�, m)g�(k̃r)
kr

[
vP�,m(q)

vq
− m2 U�,m(q)

sin q

]
eimf,

Hq =
∑
�,m

b(�, m)

[
−maE(�, m)f�(k̃r)U�,m(q)

+ aM (�, m)
k

vg�(k̃r)
vr

P�,m(q)

]
eimf,
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Hf = i
∑
�,m

b(�, m)

[
−aE(�, m)f�(k̃r)P�,m(q)

+ maM (�, m)
k

vg�(k̃r)
vr

U�,m(q)

]
eimf

b(�, m) := 1
�(� + 1)

√
2� + 1

4p

(� − m)!
(� + m)! , P�,m(q) := v

vq
Pm

� (cos q),

and U�,m(q) := Pm
� (cos q)
sin q

.

Imposing the physical matching conditions at r = a1 and r = a2, we find that
the tangential components of E and H are continuous along the boundaries, i.e.
E in

q = Eout
q , Ein

f = Eout
f , H in

q = H out
q , and H in

f = H out
f .

For TE modes, we can express these boundary conditions as

KE
11

[
aE1
0

]
= KE

12

[
aE2
bE2

]
, KE

22

[
aE2
bE2

]
= LE

[
aE3
bE3

]
, (A 4)

where for all p, q = 1, 2,

KE
pq :=

[
j�(kqap) n�(kqap)
j̃�(kqap) ñ�(kqap)

]
, LE :=

[
h(1)

� (ka2) h(2)
� (ka2)

h̃(1)
� (ka2) h̃(2)

� (ka2)

]
. (A 5)

Note that these are, respectively, identical with (2.14) and (2.15), i.e. KE
pq = Kpq

and LE = L. Therefore, as far as the study of the spectral singularities are
concerned, we obtain similar results except that n = √

5/2 is now replaced by
�. As we see from (4.9), this does not influence the parameters of the system.
It only changes the mode numbers associated with spectral singularities.

Similarly, for TM modes, we find the following set of boundary conditions.

KM
11

[
aM1
0

]
= KM

12

[
aM2
bM2

]
, KM

22

[
aM2
bM2

]
= L

[
aM3
bM3

]
, (A 6)

where, for all p, q = 1, 2,

KM
pq :=

⎡
⎣ j�(kqap) n�(kqap)

j̃�(kqap)
n2

q

ñ�(kqap)
n2

q

⎤
⎦. (A 7)

As we see the only difference between KM
pq and Kpq is the appearance of the factor

1/n2
q in the second row of KM

pq . We have shown by explicit calculation that the
presence of these extra 1/n2

q factors does not affect the calculation of spectral
singularities except for changing the value of the corresponding mode numbers.
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