3,293 research outputs found
Brain State Dependence of Hippocampal Subthreshold Activity in Awake Mice
Monitoring the membrane potential of individual neurons has uncovered how single-cell properties contribute to network processing across different brain states in neocortex. In contrast, the subthreshold modulation of hippocampal neurons by brain state has not been systematically characterized. To address this, we combined whole-cell recordings from dentate granule cells and CA1 pyramidal neurons with multisite extracellular recordings and behavioral measurements in awake mice. We show that the average membrane potential, amplitude of subthreshold fluctuations, and distance to spike threshold are all modulated by brain state. Furthermore, even within individual states, rapid variations in arousal are reflected in membrane potential fluctuations. These factors produce depolarizing ramps in the membrane potential of hippocampal neurons that precede ripples and mirror transitions to a network regime conducive for ripple generation. These results suggest that there are coordinated shifts in the subthreshold dynamics of individual neurons that underlie the transitions between distinct modes of hippocampal processing
Reply to Comment on "Reevaluation of the parton distribution of strange quarks in the nucleon"
A Comment on the recently published reevaluation of the polarization-averaged
parton distribution of strange quarks in the nucleon using final data on the
multiplicities of charged kaons in semi-inclusive deep-inelastic scattering is
reviewed. Important features of the comparison of one-dimensional projections
of the multidimensional HERMES data are pointed out. A test of the
leading-order extraction of xS(x) using the difference between charged-kaon
multiplicities is repeated. The results are consistent with leading-order
predictions within the uncertainties in the input data, and do not invalidate
the earlier extraction of xS(x).Comment: Reply Comment to arXiv:1407.372
From data to difference – considering the application of a large-scale database of human behaviour in accidental dwelling fires
This paper outlines six newly developed insight themes designed as a tool to engage the United Kingdom Fire and Rescue Service (FRS) in a discussion about the importance of human behaviour in accidental dwelling fires (ADFs), a subject that has received limited attention compared to the study of human behaviour in other environments. Central to a wider research programme focussing on the public's perspective of an ADF is an important project, named LIFEBID (Lessons in Fire & Evacuation Behaviour in Dwellings). LIFEBID will create the world's first large-scale database of human behaviour in ADFs. The LIFEBID database will generate new data comprising hundreds (and potentially) thousands of survey responses from members of the public who have directly experienced an ADF. The insight themes provide a means to engage with FRS stakeholders about the relevance of the work for them. Within this paper the insight themes consider the importance of this subject for the UK FRS, which is a key stakeholder, both in the research development and the application of its findings. The insight themes allow logical presentation of emerging and potential applications in a format that is easily understood
Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies
Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation
Chaos in the Kepler System
The long-term dynamical evolution of a Keplerian binary orbit due to the
emission and absorption of gravitational radiation is investigated. This work
extends our previous results on transient chaos in the planar case to the three
dimensional Kepler system. Specifically, we consider the nonlinear evolution of
the relative orbit due to gravitational radiation damping as well as external
gravitational radiation that is obliquely incident on the initial orbital
plane. The variation of orbital inclination, especially during resonance
capture, turns out to be very sensitive to the initial conditions. Moreover, we
discuss the novel phenomenon of chaotic transition.Comment: RevTeX, 22 pages, 6 figure
Gravitational Waves Astronomy: a cornerstone for gravitational theories
Realizing a gravitational wave (GW) astronomy in next years is a great
challenge for the scientific community. By giving a significant amount of new
information, GWs will be a cornerstone for a better understanding of
gravitational physics. In this paper we re-discuss that the GW astronomy will
permit to solve a captivating issue of gravitation. In fact, it will be the
definitive test for Einstein's general relativity (GR), or, alternatively, a
strong endorsement for extended theories of gravity (ETG).Comment: To appear in Proceedings of the Workshop "Cosmology, the Quantum
Vacuum and Zeta Functions" for the celebration of Emilio Elizalde's sixtieth
birthday, Barcelona, March 8-10, 201
An AUC-based Permutation Variable Importance Measure for Random Forests
The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html
Evolutionary Dynamics While Trapped in Resonance: A Keplerian Binary System Perturbed by Gravitational Radiation
The method of averaging is used to investigate the phenomenon of capture into
resonance for a model that describes a Keplerian binary system influenced by
radiation damping and external normally incident periodic gravitational
radiation. The dynamical evolution of the binary orbit while trapped in
resonance is elucidated using the second order partially averaged system. This
method provides a theoretical framework that can be used to explain the main
evolutionary dynamics of a physical system that has been trapped in resonance.Comment: REVTEX Style, Submitte
Gravitational Ionization: A Chaotic Net in the Kepler System
The long term nonlinear dynamics of a Keplerian binary system under the
combined influences of gravitational radiation damping and external tidal
perturbations is analyzed. Gravitational radiation reaction leads the binary
system towards eventual collapse, while the external periodic perturbations
could lead to the ionization of the system via Arnold diffusion. When these two
opposing tendencies nearly balance each other, interesting chaotic behavior
occurs that is briefly studied in this paper. It is possible to show that
periodic orbits can exist in this system for sufficiently small damping.
Moreover, we employ the method of averaging to investigate the phenomenon of
capture into resonance.Comment: REVTEX Style, Submitte
The hadron-quark phase transition in dense matter and neutron stars
We study the hadron-quark phase transition in the interior of neutron stars
(NS's). We calculate the equation of state (EOS) of hadronic matter using the
Brueckner-Bethe-Goldstone formalism with realistic two-body and three-body
forces, as well as a relativistic mean field model. For quark matter we employ
the MIT bag model constraining the bag constant by using the indications coming
from the recent experimental results obtained at the CERN SPS on the formation
of a quark-gluon plasma. We find necessary to introduce a density dependent bag
parameter, and the corresponding consistent thermodynamical formalism. We
calculate the structure of NS interiors with the EOS comprising both phases,
and we find that the NS maximum masses fall in a relatively narrow interval,
. The precise value of the
maximum mass turns out to be only weakly correlated with the value of the
energy density at the assumed transition point in nearly symmetric nuclear
matter.Comment: 25 pages, Revtex4, 16 figures included as postscrip
- …
