377 research outputs found

    Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxim

    Full text link
    Cosmogenic isotopes provide the only quantitative proxy for analyzing the long-term solar variability over a centennial timescale. While essential progress has been achieved in both measurements and modeling of the cosmogenic proxy, uncertainties still remain in the determination of the geomagnetic dipole moment evolution. Here we improve the reconstruction of solar activity over the past nine millennia using a multi-proxy approach. We used records of the 14C and 10Be cosmogenic isotopes, current numerical models of the isotope production and transport in Earth's atmosphere, and available geomagnetic field reconstructions, including a new reconstruction relying on an updated archeo-/paleointensity database. The obtained series were analyzed using the singular spectrum analysis (SSA) method to study the millennial-scale trends. A new reconstruction of the geomagnetic dipole field moment, GMAG.9k, is built for the last nine millennia. New reconstructions of solar activity covering the last nine millennia, quantified in sunspot numbers, are presented and analyzed. A conservative list of grand minima and maxima is provided. The primary components of the reconstructed solar activity, as determined using the SSA method, are different for the series based on 14C and 10Be. These primary components can only be ascribed to long-term changes in the terrestrial system and not to the Sun. They have been removed from the reconstructed series. In contrast, the secondary SSA components of the reconstructed solar activity are found to be dominated by a common ~2400-yr quasi-periodicity, the so-called Hallstatt cycle, in both the 14C and 10Be based series. This Hallstatt cycle thus appears to be related to solar activity. Finally, we show that the grand minima and maxima occurred intermittently over the studied period, with clustering near highs and lows of the Hallstatt cycle, respectively.Comment: In press in Astronomy & Astrophysics, doi: 10.1051/0004-6361/20152729

    The SGR 1806-20 magnetar signature on the Earth's magnetic field

    Full text link
    SGRs denote ``soft Îł\gamma-ray repeaters'', a small class of slowly spinning neutron stars with strong magnetic fields. On 27 December 2004, a giant flare was detected from magnetar SGR 1806-20. The initial spike was followed by a hard-X-ray tail persisting for 380 s with a modulation period of 7.56 s. This event has received considerable attention, particularly in the astrophysics area. Its relevance to the geophysics community lies in the importance of investigating the effects of such an event on the near-earth electromagnetic environment. However, the signature of a magnetar flare on the geomagnetic field has not previously been investigated. Here, by applying wavelet analysis to the high-resolution magnetic data provided by the CHAMP satellite, a modulated signal with a period of 7.5 s over the duration of the giant flare appears in the observed data. Moreover, this event was detected by the energetic ion counters onboard the DEMETER satellite.Comment: Science Editors' Choice: http://www.sciencemag.org/content/vol314/issue5798/twil.dt

    A template of atmospheric O2 circularly polarized emission for CMB experiments

    Full text link
    We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {\mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {\mu}K/\circ at 90 GHz. We also study the frequency bands of observation: around {\nu} \simeq 100 GHz and {\nu} \simeq 160 GHz we find the best conditions because the polarized signal vanishes. Finally we evaluate the accuracy of the templates and the signal variability in relation with the knowledge and the variability of the Earth magnetic field and the atmospheric parameters.Comment: 10 pages, 12 figures, accepted for publication on Mon. Not. R. Astron. So
    • …
    corecore