4,187 research outputs found

    Toroidal Orientifolds in IIA with General NS-NS Fluxes

    Full text link
    Type IIA toroidal orientifolds offer a promising toolkit for model builders, especially when one includes not only the usual fluxes from NS-NS and R-R field strengths, but also fluxes that are T-dual to the NS-NS three-form flux. These new ingredients are known as metric fluxes and non-geometric fluxes, and can help stabilize moduli or can lead to other new features. In this paper we study two approaches to these constructions, by effective field theory or by toroidal fibers twisted over a toroidal base. Each approach leads us to important observations, in particular the presence of D-terms in the four-dimensional effective potential in some cases, and a more subtle treatment of the quantization of the general NS-NS fluxes. Though our methods are general, we illustrate each approach on the example of an orientifold of T^6/Z_4.Comment: 59 pages, references adde

    Harmonic superpositions of non-extremal p-branes

    Get PDF
    The plot of allowed p and D values for p-brane solitons in D-dimensional supergravity is the same whether the solitons are extremal or non-extremal. One of the useful tools for relating different points on the plot is vertical dimensional reduction, which is possible if periodic arrays of p-brane solitons can be constructed. This is straightforward for extremal p-branes, since the no-force condition allows arbitrary multi-centre solutions to be constructed in terms of a general harmonic function on the transverse space. This has also been shown to be possible in the special case of non-extremal black holes in D=4 arrayed along an axis. In this paper, we extend previous results to include multi-scalar black holes, and dyonic black holes. We also consider their oxidation to higher dimensions, and we discuss general procedures for constructing the solutions, and studying their symmetries.Comment: Latex, 23 page

    Serological Changes Associated with Gill-Net Capture and Restraint in Three Species of Sharks

    Get PDF
    To investigate the biochemical effects of capture and restraint on sharks, 17 serum constituents were measured in three species (bonnethead shark Sphyrna tiburo, blacktip shark Carcharhinus limbatus, and bull shark C. leucas) after gill-net capture. The relative degree of capture effects on each animal was judged using an index of behavioral response devised for use in tag−recapture studies. Serum from each shark was assayed for glucose, creatinine, uric acid, sodium, chloride, potassium, inorganic phosphate, total and ionized calcium, total protein, albumin, globulin, alkaline phosphatase, lactate, lactate dehydrogenase, aspartate aminotransferase, and total iron. In addition, hematocrit was measured from whole blood for each shark. When correlated with the relative degree of capture effects, there were significant intraspecific changes in the concentration of potassium, lactate, inorganic phosphate, uric acid, alkaline phosphatase, aspartate aminotransferase, total and ionized calcium, and glucose. Significant interspecific differences in the concentration of sodium, chloride, potassium, total protein, albumin, globulin, lactate dehydrogenase, aspartate aminotransferase, ionized calcium, alkaline phosphatase, and glucose in minimally stressed animals also were observed. The study suggests that the deleterious effects of gill-net capture and restraint probably involve respiratory and metabolic acidosis and hypoglycemia as well as cellular damage. Species-specific and individual differences in the mortality of sharks caught in gill nets are likely related to an animal\u27s respiratory physiology and degree of struggling upon capture as well as to the extent of net entanglement around the gill area

    A new method for ranking academic journals in accounting and finance

    Get PDF
    Given the many and varied uses to which journal rankings are put, interest in ranking journal 'quality' is likely to persist. Unfortunately, existing methods of constructing such rankings all have inherent limitations. This paper proposes a new (complementary) approach, based on submissions to RAE 2001, which is not restricted to a pre-defined journal set and, importantly, is based on quality choice decisions driven by economic incentives. For three metrics, submissions to RAE 2001 are compared with the available set of publications to provide evidence on the perception of journal quality, a fourth metric is based on the overall RAE grades, and an overall ranking is produced

    Topological A-Type Models with Flux

    Full text link
    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. Generically these are topological membrane models, and we show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from HH, in the sense that satisfying the AKSZ master equation implies the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH=0dH=0. The membrane model can be defined on a large class of U(m)U(m)- and U(m)×U(m)U(m) \times U(m)-structure manifolds, including geometries inspired by (1,1)(1,1) supersymmetric σ\sigma-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. Furthermore, we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only HH-flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau with a closed 3-form turned on. The simplest deformation from the A-model is due to the (2,0)+(0,2)(2,0)+ (0,2) component of a non-trivial bb-field. The model is generically no longer evaluated on holomorphic maps and defines new topological invariants. Deformations due to HH-flux can be more radical, completely preventing auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes, published in JHE

    A black hole hologram in de Sitter space

    Get PDF
    In this paper we show that the entropy of de Sitter space with a black hole in arbitrary dimension can be understood using a modified Cardy-Verlinde entropy formula. We also comment on the observer dependence of the de Sitter entropy.Comment: 13 pages. Final version accepted for publication in JHEP. Added references and improved presentatio

    Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Get PDF
    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions

    Mass, Entropy and Holography in Asymptotically de Sitter Spaces

    Get PDF
    We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/CFT correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimension lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter has a cosmological singularity. Finally, if a dual to de Sitter exists, the trace of our stress tensor computes the RG equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe.Comment: 31 pages, LaTeX. v2: references and acknowledgements added, rewrite of "RG flow vs. cosmological evolution" section, log divergences commented on, typos corrected, comments on sign

    Deformation Theory of Holomorphic Vector Bundles, Extended Conformal Symmetry and Extensions of 2D Gravity

    Full text link
    Developing on the ideas of R. Stora and coworkers, a formulation of two dimensional field theory endowed with extended conformal symmetry is given, which is based on deformation theory of holomorphic and Hermitian spaces. The geometric background consists of a vector bundle EE over a closed surface Σ\Sigma endowed with a holomorphic structure and a Hermitian structure subordinated to it. The symmetry group is the semidirect product of the automorphism group Aut(E){\rm Aut}(E) of EE and the extended Weyl group Weyl(E){\rm Weyl}(E) of EE and acts on the holomorphic and Hermitian structures. The extended Weyl anomaly can be shifted into an automorphism chirally split anomaly by adding to the action a local counterterm, as in ordinary conformal field theory. The dependence on the scale of the metric on the fiber of EE is encoded in the Donaldson action, a vector bundle generalization of the Liouville action. The Weyl and automorphism anomaly split into two contributions corresponding respectively to the determinant and projectivization of EE. The determinant part induces an effective ordinary Weyl or diffeomorphism anomaly and the induced central charge can be computed.Comment: 49 pages, plain TeX. A number of misprints have been correcte

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering
    corecore