662 research outputs found
A Double Sigma Model for Double Field Theory
We define a sigma model with doubled target space and calculate its
background field equations. These coincide with generalised metric equation of
motion of double field theory, thus the double field theory is the effective
field theory for the sigma model.Comment: 26 pages, v1: 37 pages, v2: references added, v3: updated to match
published version - background and detail of calculations substantially
condensed, motivation expanded, refs added, results unchange
Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions
We consider the reduction of the duality invariant approach to M-theory by a
U-duality group valued Scherk-Schwarz twist. The result is to produce
potentials for gauged supergravities that are normally associated with
non-geometric compactifications. The local symmetry reduces to gauge
transformations with the gaugings exactly matching those of the embedding
tensor approach to gauged supergravity. Importantly, this approach now includes
a nontrivial dependence of the fields on the extra coordinates of the extended
space.Comment: 22 pages Latex; v2: typos corrected and references adde
Generalized Geometry and M theory
We reformulate the Hamiltonian form of bosonic eleven dimensional
supergravity in terms of an object that unifies the three-form and the metric.
For the case of four spatial dimensions, the duality group is manifest and the
metric and C-field are on an equal footing even though no dimensional reduction
is required for our results to hold. One may also describe our results using
the generalized geometry that emerges from membrane duality. The relationship
between the twisted Courant algebra and the gauge symmetries of eleven
dimensional supergravity are described in detail.Comment: 29 pages of Latex, v2 References added, typos fixed, v3 corrected
kinetic term and references adde
Gauge and Supersymmetric Invariance of a Boundary Bagger-Lambert-Gustavsson Theory
In this paper we will discuss the effect of a having a boundary on the
supersymmetric invariance and gauge invariance of the Bagger-Lambert-Gustavsson
(BLG) Theory. We will show that even though the supersymmetry and gauge
invariance of the original BLG theory is broken due to the presence of a
boundary, it restored by the addition of suitable boundary terms. In fact, to
achieve the gauge invariance of this theory, we will have to introduce new
boundary degrees of freedom. The boundary theory obeyed by these new boundary
degrees of freedom will be shown to be a generalization of the gauged
Wess-Zumino-Witten model, with the generators of the Lie algebra replaced by
the generators of the Lie 3-algebra. The gauge and supersymmetry variations of
the boundary theory will exactly cancel the boundary terms generated by the
gauge and supersymmetric variations of the bulk theory.Comment: 15 pages, 0 figures, accepted for publication in JHE
On the Riemann Tensor in Double Field Theory
Double field theory provides T-duality covariant generalized tensors that are
natural extensions of the scalar and Ricci curvatures of Riemannian geometry.
We search for a similar extension of the Riemann curvature tensor by developing
a geometry based on the generalized metric and the dilaton. We find a duality
covariant Riemann tensor whose contractions give the Ricci and scalar
curvatures, but that is not fully determined in terms of the physical fields.
This suggests that \alpha' corrections to the effective action require \alpha'
corrections to T-duality transformations and/or generalized diffeomorphisms.
Further evidence to this effect is found by an additional computation that
shows that there is no T-duality invariant four-derivative object built from
the generalized metric and the dilaton that reduces to the square of the
Riemann tensor.Comment: 36 pages, v2: minor changes, ref. added, v3: appendix on frame
formalism added, version to appear in JHE
Double Field Theory for Double D-branes
We consider Hull's doubled formalism for open strings on D-branes in flat
space and construct the corresponding effective double field theory. We show
that the worldsheet boundary conditions of the doubled formalism describe in a
unified way a T-dual pair of D-branes, which we call double D-branes. We
evaluate the one-loop beta function for the boundary gauge coupling and then
obtain the effective field theory for the double D-branes. The effective field
theory is described by a DBI action of double fields. The T-duality covariant
form of this DBI action is thus a kind of "master" action, which describes all
the double D-brane configurations related by T-duality transformations. We
discuss a number of aspects of this effective theory.Comment: Latex, 1+33 pages. v2 with minor corrections, a new reference added.
v3 a typo correcte
Massive Type II in Double Field Theory
We provide an extension of the recently constructed double field theory
formulation of the low-energy limits of type II strings, in which the RR fields
can depend simultaneously on the 10-dimensional space-time coordinates and
linearly on the dual winding coordinates. For the special case that only the RR
one-form of type IIA carries such a dependence, we obtain the massive
deformation of type IIA supergravity due to Romans. For T-dual configurations
we obtain a `massive' but non-covariant formulation of type IIB, in which the
10-dimensional diffeomorphism symmetry is deformed by the mass parameter.Comment: 21 page
The local symmetries of M-theory and their formulation in generalised geometry
In the doubled field theory approach to string theory, the T-duality group is
promoted to a manifest symmetry at the expense of replacing ordinary Riemannian
geometry with generalised geometry on a doubled space. The local symmetries are
then given by a generalised Lie derivative and its associated algebra. This
paper constructs an analogous structure for M-theory. A crucial by-product of
this is the derivation of the physical section condition for M-theory
formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
Differential geometry with a projection: Application to double field theory
In recent development of double field theory, as for the description of the
massless sector of closed strings, the spacetime dimension is formally doubled,
i.e. from D to D+D, and the T-duality is realized manifestly as a global O(D,D)
rotation. In this paper, we conceive a differential geometry characterized by a
O(D,D) symmetric projection, as the underlying mathematical structure of double
field theory. We introduce a differential operator compatible with the
projection, which, contracted with the projection, can be covariantized and may
replace the ordinary derivatives in the generalized Lie derivative that
generates the gauge symmetry of double field theory. We construct various gauge
covariant tensors which include a scalar and a tensor carrying two O(D,D)
vector indices.Comment: 1+22 pages, No figure; a previous result on 4-index tensor removed,
presentation improve
Classification of non-Riemannian doubled-yet-gauged spacetime
Assuming covariant fields as the `fundamental' variables,
Double Field Theory can accommodate novel geometries where a Riemannian metric
cannot be defined, even locally. Here we present a complete classification of
such non-Riemannian spacetimes in terms of two non-negative integers,
, . Upon these backgrounds, strings become
chiral and anti-chiral over and directions respectively, while
particles and strings are frozen over the directions. In
particular, we identify as Riemannian manifolds, as
non-relativistic spacetime, as Gomis-Ooguri non-relativistic string,
as ultra-relativistic Carroll geometry, and as Siegel's
chiral string. Combined with a covariant Kaluza-Klein ansatz which we further
spell, leads to Newton-Cartan gravity. Alternative to the conventional
string compactifications on small manifolds, non-Riemannian spacetime such as
, may open a new scheme of the dimensional reduction from ten to
four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in
(2.51) correcte
- …