125 research outputs found

    Human Activity Recognition with Smart Watch based on H-SVM

    Get PDF

    Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants.</p> <p>Results</p> <p>To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain <it>Erysiphe graminis f. sp. tritici </it>(<it>Egt</it>) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA.</p> <p>Conclusions</p> <p>Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses.</p

    A Factor Graph Based Indoor Localization Approach for Healthcare

    Get PDF
    In healthcare facilities, indoor localization technology has a broad range of applications. Traditional Pedestrian Dead Reckoning (PDR) and WiFi fingerprint-based methods each have their limitations. To address these challenges, this study introduces a multi-source fusion indoor localization system that uses a Factor Graph to integrate inertial positioning algorithms with WiFi fingerprint-based localization. The system processes accelerometer and gyroscope data using a data-driven PDR algorithm. For WiFi localization, considering that the extensive data collection required is a significant barrier to the deployment of WiFi-based localization methods, the proposed approach applies Gaussian process regression techniques to limited WiFi fingerprint data, significantly reducing initial deployment costs and enhancing accuracy. Finally, the entire system employs a Factor Graph for the integration of the data-driven PDR and WiFi fingerprint localization results. Experimental results show that, compared to using only inertial or WiFi data for localization, this method significantly improves localization accuracy. The findings suggest that this approach could prompt the utilization of indoor localization technology in healthcare facilities.<br/

    Recommended high performance telescope system design for the TianQin project

    Full text link
    China is planning to construct a new space-borne gravitational-wave (GW) observatory, the TianQin project, in which the spaceborne telescope is an important component in laser interferometry. The telescope is aimed to transmit laser beams between the spacecrafts for the measurement of the displacements between proof-masses in long arms. The telescope should have ultra-small wavefront deviation to minimize noise caused by pointing error, ultra-stable structure to minimize optical path noise caused by temperature jitter, ultra-high stray light suppression ability to eliminate background noise. In this paper, we realize a telescope system design with ultra-stable structure as well as ultra-low wavefront distortion for the space-based GW detection mission. The design requirements demand extreme control of high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the initial structure design of the mentioned four-mirror optical system is explored. After optimization, the maximum RMS wavefront error is less than lamda/300 over the full field of view (FOV), which meets the noise budget on the telescope design. The stray light noise caused by the back reflection of the telescope is also analyzed. The noise at the position of optical bench is less than 10-10 of the transmitted power, satisfying the requirements of space gravitational-wave detection. We believe that our design can be a good candidate for TianQin project, and can also be a good guide for the space telescope design in any other similar science project

    GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    Get PDF
    <div><h3>Background</h3><p>The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present.</p> <h3>Results</h3><p>To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on Ξ² cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis.</p> <h3>Conclusions</h3><p>These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs.</p> </div

    A Novel Energy-Efficient Approach for Human Activity Recognition

    Get PDF
    In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper

    Interplay Between Liver Type 1 Innate Lymphoid Cells and NK Cells Drives the Development of Alcoholic Steatohepatitis

    Get PDF
    BACKGROUND & AIMS: Liver contains high frequency of group 1 innate lymphoid cells (ILC), which are composed of comparable number of type 1 ILC (ILC1) and natural killer (NK) cells in steady state. Little is known about whether and how the interaction between ILC1 and NK cells affects the development of alcoholic liver disease. METHODS: A mouse model of chronic alcohol abuse plus single-binge (Gao-Binge model) was established. The levels of alanine aminotransferase/aspartate aminotransferase, hepatic lipid, and inflammatory cytokines or neutrophils were measured to evaluate the degree of liver injury, steatosis, and inflammation. Flow cytometric analysis, cell depletion, or adoptive transfer were used to interrogate the interaction between ILC1 and NK cells. RESULTS: Upon chronic alcohol consumption, NK cells, but not ILC1, underwent apoptosis, resulting in ILC1 dominance among group 1 ILC. Interleukin (IL) 17A expression was up-regulated, and increased IL17A was mainly derived from liver ILC1 after chronic alcohol feeding. Either depletion of ILC1 or neutralization of IL17A could significantly attenuate liver steatosis, inflammation, and injury in alcohol-fed mice. In contrast, normalization of the ILC1/NK cells ratio through NK cells transfer or expanding NK cells had a significant hepatoprotection against alcohol-induced steatohepatitis. Furthermore, NK cell-derived interferon gamma exerted a protective function via inhibiting IL17A production by liver ILC1 during alcoholic steatohepatitis. CONCLUSIONS: This is the first study showing that the interplay between liver ILC1 and NK cells occurs and drives the development of alcoholic steatohepatitis. Our findings support further exploration of liver ILC1 or NK cells as a therapeutic target for the treatment of alcohol-associated liver disease
    • …
    corecore