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Abstract: In this paper, we propose a novel energy-efficient approach for mobile activity recognition
system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates,
can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates
hierarchical support vector machine and context-based classification (HSVMCC) is presented to
achieve a high accuracy of activity recognition when the sampling rate is less than the activity
frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient
approach with the data collected from 20 volunteers (14 males and six females) and the average
recognition accuracy of around 96.0% was achieved. Results show that using a low sampling
rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and
50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while
maintaining high activity recognition accuracy. The composition of power consumption in online
ARS is also investigated in this paper.

Keywords: activity recognition; low power consumption; low sampling rate; energy-efficient classifier

1. Introduction

Human activity recognition plays a crucial role in pervasive computing. Many applications
for healthcare, sports, security agencies and context-aware services applications have emerged [1,2].
For example, life logs collected by smart mobile phone sensors (such as accelerometers) have been
used to provide personalized health care [3]. Vermeulen et al. [4] developed a smartphone-based
falls detection application to help elderly people. Zhou et al. [5] implemented a phone system for
indoor pedestrian localization. Google Now is one of the emerging smart applications that provide
context-aware services. It calculates and pushes relevant information automatically to mobile users
based on their current locations [6].

The history of human activity recognition can be traced back to the late 1990s [7]. Four sensors
(accelerometers) were placed on different positions of body to detect human activities (lying, sitting,
sitting/talking, sitting/operating, standing, walking, upstairs, downstairs, and cycling). Randle and
Muller [8] used a single wired biaxial accelerometer to classify six activities (sitting, standing, walking,
running, upstairs, and downstairs) in 2000. However, the early systems are not easy to use.

Thanks to the development of microelectronics and computer systems, the sensors and mobile
devices are now with higher computational capability, smaller size and more acceptable usability.
The studies on activity recognition systems (ARS), especially smartphone based activity recognition
system (ARS), have been set off a booming in recent years [9–13]. The accelerometers and gyroscopes
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embedded in smart phones have been used to collect raw activity data in ARS. Smart phones have
become one of the most indispensable parts of life when comparing with other special devices [13,14].
It is now a relative low-cost device for both developers and users.

The smart phone based ARS can be divided into two types. One is online activity recognition
systems, i.e., data collection, data processing and classification are carried out locally on the mobile
phones [11,15]. The other is offline activity recognition systems, i.e., the classification is carried out
non-real-time, or offline. Similar to other research [16], we consider an ARS in which the classification
is carried out in a remote server or cloud as an offline ARS because the classification becomes
non-real-time when the phone has no internet connection.

An online ARS can recognize the user’s behavior and provide the feedback in real time to support
user’s daily life [17]. A number of studies on online ARS have been carried out. Anjum et al. [18]
developed an application for recognizing a number of activities, including driving and cycling, with an
average accuracy of greater than 95%. Kose et al. [15] investigated the performance of different
classifiers and used accelerometer of the smartphone to classify four activities (sitting, standing,
walking, and running). Schindhelm et al. [19] explored the capability of using smartphone (HTC hero)
sensors for the detection of steps and movement/activity types. Martín et al. [20] presented the work
of using smartphone for activity recognition without interfering user’s life.

Although the previous research work has achieved good accuracy in activity detection, there are
few reports on power consumption. The power consumption is one of the main challenges [11],
especially for the online ARS. The mobile phones are usually used for making phone calls or Internet
surfing, so the power consumption of the online ARS must be reduced as low as possible. In order to
solve this issue, one straightforward method is to reduce the number of sensors—for example, turning
off the Global Positioning System (GPS) while the user is indoors or applying some energy-efficient
sensors (such as accelerometers, gyroscopes) [10,21,22] instead. The other approach is to lower the
sampling rate. However, in most studies [13], the sampling rates were still high because they followed
the Nyquist theorem, i.e., the sampling rate must be equal to or higher than twice the signal frequency
so that no actual information will be lost during the sampling process.

In this paper, we propose an energy-efficient ARS that uses low sampling rate and can still achieve
high accuracy. A theoretically proof of the rationale of using low sampling rate in ARS is presented.
A novel classifier is also proposed and developed to improve the performance of activity recognition.
The proposed system consists of three components: (a) sensors using the proposed low sampling rate
for data collection; (b) feature extraction for training and classification; (c) the proposed classifier which
integrates hierarchical support vector machine (H-SVM) with context-based classification (HSVMCC)
to detect user’s activities.

The rest of the paper is organized as follows. In Section 2, we briefly describe the related work.
Section 3 details the proposed energy-efficient system, including data collection using low sampling
rate, feature extraction method, the proposed HSVMCC algorithm, and the composition of power
consumption in online ARS. The discussion of experiments and results is presented in Section 4.
The paper is concluded by the summary of merits, limitations and future work in Section 5.

2. Related Work

The common approach of saving energy consumption in online ARS is to detect the mobile status
and user’s location or activities and then turn on/off some unused sensors [22–24]. Wang et al. [24]
presented a novel design framework for an Energy Efficient Mobile Sensing System (EEMSS). Using
a hierarchical sensor management strategy to recognize user states and detect state transitions,
the EEMSS significantly improved battery life of the device.

Adopting one tri-axial accelerometer, Lius et al. [13] detected activities (including walking,
jumping, immobile, running, up, down, cycling and driving) using the sampling rate varying from
32 Hz to 50 Hz. An average accuracy of 98% was achieved. Discrete variables were used to reduce
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the calculation costs and save the energy. However, the sampling rate is still too high to maximize
energy savings.

Reddy et al. [25] employed the GPS and accelerometer to detect activities (including stationary,
walking, running, biking or motorized transport). Although the sampling rate was set to 1 Hz only,
the GPS is not an energy-efficient sensor and cannot be used indoors.

Similarly, aiming to detect human mobility states, Oshin et al. [10] used an accelerometer at a
sampling rate of 4 Hz. The results showed an overall average accuracy of 92%. However, it failed to
detect some regular indoor activities, such as climbing stairs, in contrast to other studies [12,18,26].
The rationale of using the sampling rate of 4 Hz was not presented in the paper.

Applying a tri-accelerometer at the sampling rate of 2 Hz, Liang et al. [27] managed to obtain
the average accuracy of 89% detecting human activities (standing, sitting, lying, walking, running,
jumping, ascending, descending, cycling and driving). However, no justification was provided for the
choice of sampling rate. It also lacked the accurate evaluation of power performance.

Activity recognition plays an important role in the area of pervasive healthcare. Liang et al. [28]
proposed a hierarchical method to recognize user activities based on a single tri-axial accelerometer in
smart phones for health monitoring.

Li et al. [29] proposed to leverage machine learning technologies for improving the energy
efficiency of multiple high-energy-consuming context sensors by trading off the sensing accuracy.

For the purpose of utilizing available energy efficiently while achieving a desired activity
recognition accuracy, Zappi et al. [30] investigated the benefits of dynamic sensor selection.
It introduced and characterized an activity recognition method with the help of an underlying run-time
sensor selection scheme.

Mortazavi et al. [31] presented a multiple model approach to classifying movements in exergame
environment with fine-grain motions. Expert knowledge was applied to identify similar movements.
Each submodel was modeled using a one to many support vector machine (SVM) with nonlinear
kernel. Although the multiple model approach achieved a good classification performance, the study
didn’t consider the power consumption either in algorithms or in data sampling, where a sampling
rate of 50 Hz was used.

In our previous work [32], we have experimentally tested and confirmed that the sampling rate
of 1 Hz could achieve high performance for detecting activities (including sitting, standing, walking,
and running) in an offline ARS.

Considering the above-related work, we have carried out a theoretical analysis on why using a
low sampling rate in ARS can also achieve high performance. Experiments based on the smartphone
have also been undertaken to evaluate the power consumption of the online ARS with different
sampling rates. Furthermore, the recognition of climbing stairs activities (upstairs and downstairs) is
also included in the proposed ARS.

3. Energy-Efficient Activity Recognition System

The aim of this research is to build a user-independent and energy-efficient online ARS with high
accuracy. The proposed system, as shown in Figure 1, includes data collection, feature extraction,
and the training and classification (H-SVM and context-based classification). The system does not
contain data processing before the feature extraction because the data obtained have been preprocessed
by the phone’s built-in filters.
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Figure 1. System architecture.

3.1. Data Collection at a Low Sampling Rate

The types of sensors and the sampling rates are two factors that must be considered during data
collection in ARS. The barometer, accelerometer and gyroscope are the sensors usually used in ARS.

Barometer is the sensor for measuring altitude or height. Using low sampling rate of barometer
can detect whether the user is climbing stairs or not.

Inertial measurement units (IMUs), such as accelerometer and gyroscope, are used to measure the
user motion. In previous studies [1], the sampling rate of these sensors (such as accelerometers) in
ARS was set between 10 Hz and 100 Hz. It is a general view that a high sampling rate can avoid the
information loss of signals. Some research also claimed that high sampling rate could achieve high
accuracy of recognition [33]. However, the higher the sampling rate is, the more energy consumed.
The trade-off between the sampling rate and the power consumption has become one important
concern in most energy-efficient ARS.

In our research, we proposed a solution to solve the contradiction between the sampling rate
and the power consumption, that is, using a low sampling rate of IMU in ARS to achieve a similar
recognition accuracy, compared with using high sampling rates.

For human activity recognition, the purpose of sampling is not to restore the raw signals of
activities, but to detect different activities according to the statistical properties of signals, such as
means, variance, and maximum. It is considered that using high sampling rate can capture all the
details of the person’s movements, and this would benefit the recognition of activity [34]. However,
the signal information would not be lost if the sampling rate agreed with the Nyquist theorem,
which means that the statistical properties of using low or high sampling rate are consistent. When the
sampling rate is less than the frequency required by the Nyquist theorem, we suggested that adding
more sampling periods can acquire the consistent statistical properties, which is demonstrated
as follows:

Set the frequency of activity as Fa, the sampling rate as FS, and the sampling period as T.
For different sampling rates of FS1 and FS2 , if they agree with the following conditions:

FS1%FS2 6= 0 (1)

There exists Equation (2):

FS1 × T1 = FS2 × T2

T1 ∈ {1, 2, . . . , n}, FS1 × T1 ∈ {1, 2, . . . , n}
(2)
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where T1 and T2 are sampling periods.
The elements of dataset X1 = {x1, x2, . . . , xn} obtained at the sampling rate of FS1 and sampling

period of T1 are the same with dataset Y1 = {y1, y, . . . , yn} obtained at the sampling rate of FS2 and
sampling period of T2. Thus, the statistical properties of the dataset X1 and the dataset Y1 are the same,
if the sampling period is long enough.

If sampling rate FS3 is less than the frequency required by the Nyquist theorem Fa, which is:

FS3 < 2Fa (3)

Human activity signal is a non-strict period, so Fa is not a determined value, but a fluctuating
value. The relation between 2Fa and FS3 satisfied the Equation (1). The same as above, the elements of
dataset D = {d1, d2, . . . , dn} obtained at the sampling rate of 2Fa and the sampling period of T has the
same statistical properties as the dataset D′ =

{
d′1, d′2, . . . , d′n

}
obtained at the sampling rate of FS3 and

the sampling period of T3.
Combined with the formulas above, time period T3 is calculated as Equation (4):

T3 = (2Fa × T)
FS3

(4)

Therefore, when we use a low sampling rate that does not agree with the Nyquist theorem in
ARS, we can add the sampling time to ensure the same statistical properties.

3.2. Hierarchical Support Vector Machine (H-SVM)

Support vector machine (SVM) is a supervised learning algorithm. The basic SVM model is the
probability of a binary classification. In order to deal with multiple classes, Liu et al. [35] proposed an
adaptive hierarchical multi-class SVM classification scheme at the training stage.

In this paper, the k-means clustering algorithm was used in training the H-SVM classifier.
The training algorithm is summarized in Algorithm 1.

Algorithm 1 Training algorithm

1: Construct a feature set (
{

f1, f2, . . . , fn,
(

fi1, f j1

)
,
(

fi2, f j2

)
, . . . , ( f1, fi, . . . , fm)

}
). The feature set is the

combination of all features.
2: Sorting features according to the power consumption of the sensor and the computational cost of feature
extraction. The lower power consumption of the sensor ranks the higher. Features with lower computational
cost have in higher priority when the sensor is the same.
3: Selecting m top features with the higher priority from the feature set.
4: For each of these m features, set the whole dataset as DataSets_In.
5: Input DataSets_In. do
6: {
7: Set parameter of clustering k = 2
8: Use k-means clustering algorithm to get two cluster A and B. The two clusters are the subsets of
DataSets_In. Evaluate the performance of k-means clustering, select the optimal ones according the accuracy
and the equilibrium of the two subset.
9: Input subsets A and B
10: Training a binary classifier SVM
11: SVM_n = SVM (n = 1, 2, 3 . . . . . . )
12: DataSets_In = subsets A or B respectively
13: } while DataSets_In only contains data from a single class
14: The resulting classifier (i.e., final classifier) is a one-node SVM classifier, as an N-class classification needs
an N-1 node classifier.
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3.3. Context-Based Classification

During the study, we found that there are two reasons that some errors may occur in the activity
recognition: (1) features were similar between two activities; (2) some measurement errors. To correct
these errors, we proposed a context-based classification approach. Context-based classification is a
method that combining the previous variables’ information and the following variables’ information
during the analysis of the current variable. It can effectively eliminate the individual errors.

Human activities are continuous processes. Therefore, the previous recognition results and
the following recognition results can be used to check and correct the current recognition result.
The process is archived by using a sliding window (the window length is 2k + 1) to correct the result at
time t, as shown in Figure 2.
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In Figure 2, the variable Rt is the result of the H-SVM model at time t, and RWt is the corrected
result after context-based classification. RWt is defined as the mode (the most frequent result) among
{Rt−k, Rt−k+1, . . . , Rt+k}. We assume that the probability of recognition errors ψ is independent
identically distributed, the accuracy at time t (Accuracyt) with values of k is showed as follows:

Accuracyt = (1− ψ)2k+1 + C1
2k+1(1− ψ)2kψ + . . . + C2k

2k+1(1− ψ)ψ2k + ψ2k+1 (5)

The algorithm is summarized in Algorithm 2:

Algorithm 2 Context-based classification Algorithm

1: Initialize the data buffer {Result1, Result2, . . . , Result2k+1}
2: while R is input from H-SVM do
3: {
4: If n < 2k + 2 then
5: Resultn = R(n = 1, 2, . . . , 2k + 1)
6: RWT = Rt
7: else
8: {Mode1, Mode2, . . .} = MajorityO f {Result1, Result2, . . . , Result2k+1}
9: if Resultk+1 ∈ {{Mode1}, {Mode2}, . . .} then
10: RWt = Resultk+1 = Rt

11: else
12: RWt = Mode1

13: }
14: end while
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Firstly, variables {Result1, Result2, . . . , Result2k+1} are initilised as data buffer. Then, for each R
received, it is placed to the data buffer {Result1, Result2, . . . , Result2k+1}. For the first R (which equals
to Rt−k) input from H-SVM, the RWt is set as Rt. For the following R, RWt does not change. When the 2k
+ 1 of R are all input, the majority {Mode1, Mode2, . . .} of the data buffer is calculated. If Resultk+1 (here,
Resultk+1 equals to Rt) belongs to {Mode1, Mode2, . . .}, and the RWt is set as Resultk+1; otherwise,
the RWt is set as Mode1. Then, the data buffer is shifted right by one to store the next Rt. For the
next RW, the steps of calculating RW are the same as RWt. The algorithm is stopped when R is no
longer received.

Time delay is the main defect of the context-based classification algorithm. It is equal to the value
of k. It increases with the growth of the sliding window size. Thus, it is important to choose a suitable
sliding time window size (that is, the values of 2k + 1) in an online ARS.

4. Experiments and Discussion

The experiments include four parts: (1) data collection; (2) parameter selections; (3) classification
performance; and (4) the power consumption of the proposed energy-efficient online ARS.

4.1. Data Collection

For data collection, a smartphone (Nexus 5, Google Inc., Mountain View, CA, United States of
America) was placed in the right-front pocket of the pants, showed in Figure 3. The sensors used
in the experiments were barometer and accelerometer inside the smartphone. As shown in Table 1,
four independent data collections were carried out separately in the study.
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Table 1. Data collection of four experiments.

Data Type Number of Volunteers Sampling Rate Time Window Overlap Time

Data collection 1 1 (male, 23 years old) 1 Hz 5 s 0 s
Data collection 2 20 (14 males, 6 females, 22–25 years old) 1 Hz 5 s 0 s
Data collection 3 5 5 Hz 1 s 0 s
Data collection 4 5 10 Hz/50 Hz 1 s 0 s

Data collection 1 (Training datasets): the sampling rate was set to 1 Hz, the time window was 5 s,
without overlap. One volunteer (male, 23 years old, healthy student) was asked to perform six types of
activities: sitting, standing, walking, running, climbing upstairs and going downstairs. The volunteer
sat and stood indoors, walked in the corridor or in the room, ran on a treadmill at 9 km/h, climbed
upstairs and went downstairs in our lab building, which is six-floors. Each activity was carried out
15 times (15 samples collected). In total, 90 samples were collected as the training data-sets.
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Data collection 2: The sampling rate was set to 1 Hz, the time window was 5 s, without
overlap. Twenty volunteers (14 males and six females, ages between 22 to 25) participated in the data
collection. The volunteers were asked to undertake the six activities as described in the Data collection
1. Each activity (sitting, standing, walking and running) was consecutively carried out for 5 min.
The volunteers were asked to climb upstairs from the second floor to the sixth floor and go downstairs
from the sixth floor to the second floor, five times repeatedly. All these data collected in Data collection
2 are only used for testing, as shown in Table 2. For each activity, we removed the data of the first time
window (5 s) and the last time window (5 s) to ensure that the data obtained only contained one type
of activity.

Table 2. Testing datasets collected from 20 participants (Data collection 2).

Activity Type Phone Model Number of Data Time Windows

Sitting LG Nexus5 1234
Standing LG Nexus5 1246
Walking LG Nexus5 1375
Running LG Nexus5 1154
Upstairs LG Nexus5 1324

Downstairs LG Nexus5 1256

To compare the accuracy of activity recognition at different sampling rates, five volunteers
(from the above 20 volunteers in the Data collection 2) participated again in the following two new
data collections.

Data collection 3: The purpose of this data collection is to verify that using a low sampling rate
(1 Hz) can also achieve high accuracy of recognition, compared with the sampling rate agreed with the
Nyquist theorem. Thus, the sampling rate was set as 5 Hz, which agreed with the Nyquist theorem
and was close to twice the frequency of human activity obtained by phone sensor. The time window
was 1 s.

Data collection 4: The aim of this data collection is to verify that different sampling rates that
agreed with the Nyquist theorem achieve almost the same accuracy. Activity data were collected at the
sampling rates of 10 Hz and then 50 Hz. The time window of different sampling rates was 1 s.

4.2. The K-Means Clustering and H-SVM

In general, the feature extraction aims to identify the main characteristics that accurately
represented the original data [36]. The process is to find the most useful, valid and meaningful
information to recognize activities with high accuracy. In previous studies [1,10,13], the common
features include time domains and frequency domains, such as means, standard deviation, magnitude
of acceleration and FFT (Fast Fourier Transform). There are no fixed features that are suitable for
all ARS.

In this paper, we firstly constructed a feature set. The feature set is the combination of all features,
that is Pd (pressure difference), Pdabs

(absolute value of pressure difference), Xmeans, Ymeans, Zmeans

(the means of X-/Y-/Z-axis accelerometer values), and Twaves(the sum of root mean squares of the
difference of adjacent points in a time window).

After constructing the feature set, algorithm 1 was applied to feature selections and classification.
Based on the power consumption of the sensor and the computational cost of feature extraction,
m features (Pd, Pdabs

, Ymeans, Twaves) with the higher priority from the set of optimal features
were selected.

(1) Pressure difference Pd: The difference of pressure value is measured by barometer built-in
the mobile phone, as shown in Equation (6). The barometer value is considered as height changing.
When the altitude increases, the pressure value decreases, and vice versa:

Pd = pn − p0 (6)
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where pn is the last pressure value and p0 is the first pressure value in the time window
(sampling period). The Pd value is negative when the user climbs upstairs, and it is positive when
going downstairs.

(2) The absolute value of pressure difference (Pdabs
): The Pdabs

is calculated as follows:

Pdabs
= abs(Pd) (7)

(3) X-/Y-/Z-axis accelerometer value (Xmeans, Ymeans, Zmeans): This is the means of the
X-/Y-/Z-axis accelerometer values. The values of tri-axial accelerometer we got from the smartphone
(Android API) contained the gravity values. The following is the calculation for Xmeans, Ymeans, Zmeans:

Xmeans =
x1+x2+x3

n
Ymeans =

y1+y2+y3
n

Zmeans =
z1+z2+z3

n

(8)

(4) The wave of three-axis accelerometer (Twaves): this is the sum of the RMS (Root Mean Square)
of the difference of adjacent points in a time window, and can be calculated using Equation (9):

Twave =
n

∑
i=0

√
(AccXi+1 − AccXi)

2
+ (AccYi+1 − AccYi)

2
+ (AccZi+1 − AccZi)

2
(9)

where AccXi, AccYi, AccZi are the three-axis values of accelerometer at time stamp i, respectively.
The training carried out on the whole dataset (Data collection 1) using algorithm 1. As shown

in Figure 4, for the feature Pd (Figure 4a,b), the whole training dataset was divided into subset A
(downstairs) and B (upstairs, sitting, standing, walking, running). For the feature Pdabs

(Figure 4c,d),
the whole training dataset was divided into two subsets A (upstairs and downstairs) and subset B
(sitting, standing, walking, running) using the k-means clustering algorithm. For the feature Ymeans

(Figure 4e,f), the whole training dataset was divided into subset A (sitting) and B (downstairs, upstairs,
standing, walking, running). For the feature Twaves (Figure 4g,h), the whole training dataset was
divided into subset A (running) and B (downstairs, upstairs, sitting, standing, walking).

As shown in Figure 4, the accuracy and partition degree of k-means clustering of different features
were assessed. The equilibrium of two subsets was also considered. Figure 4b,d,f shows the results that
k-means clustering can get good performance using the selected features, but only the feature Pdabs

can
meet the equilibrium requirement. Thus, the selected feature Pdabs

is the optimal feature for training the
first SVM classifier (SVM1). In the Algorithm 1, the data were randomly divided into 80% for training
and 20% for testing in order to select the optimal features and build the SVM classification models.
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Figure 4. (a) Pd value; (b) results of k-means clustering of Pd feature; (c) Pdabs
value; (d) results of

k-means clustering of Pdabs
feature; (e) Ymeans value; (f) results of k-means clustering of Ymeans feature;

(g) Twaves value; (h) results of k-means clustering of Twaves feature.

According to Algorithm 2, for subset (upstairs or downstairs), feature Pd is the optimal feature for
training SVM classifier (SVM2) to partition the upstairs or downstairs because it is the most accuracy
ones. For subset (sitting, standing, walking, running), feature Ymeans is suitable for classification
(SVM3), dividing dataset (sitting, standing, walking, running) into subset (sitting) and subset (standing,
walking, running) with the highest accuracy. In addition, Ymeans is also the optimal feature for dividing
dataset (standing, walking, running) into subset (standing, walking) and running (SVM4). Finally,
the Twaves is used for partition standing and walking (SVM5). The whole H-SVM classification model
is shown as follows.

The whole training dataset (Data collection 1) contains 90 samples. After training, the five-node
SVM classifier was built. As illustrated in Figure 5, the dataset is divided into two sets whether the



Sensors 2017, 17, 2064 11 of 21

activity is climbing stairs or not. If the classification result of classifier SVM1 is climbing stairs, classifier
SVM2 is used to judge if the activity is climbing upstairs or going downstairs. If the result of SVM1 is
not stair climbing, classifier SVM3 is applied to classify sitting or standing, walking, running and then
classifier SVM4 will contribute to recognize standing, walking or running. Finally, classifier SVM5
is used to differentiate standing or walking. Considering the k-means clustering results discussed
before, Pdabs

can be used as the input feature for SVM1 to detect climbing stairs or not. Furthermore,
Pd, Twaves can be used as input feature for SVM2 and SVM5, respectively, and Ymeans can be input as
feature for SVM3 and SVM4. These may reflect the body movement efforts and acceleration patterns
when carrying out different types of activities, that is: (1) the pressure used in climbing stairs activities
is different from activities on flat ground; (2) changing of acceleration on the Y-axis can be used to
differentiate the sitting status from standing/walking/running and further differentiate running from
walking/standing; (3) information of changes in all three directions needs to be taken into account in
order to classify standing from walking.
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4.3. The Parameter Settings of Proposed ARS.

The sampling rate and time window of accelerometer during data collection and sliding window
size of context-based classification are three crucial parameters that may affect the power consumption
and accuracy of proposed ARS.

The frequency of human activity is about 2 Hz. For example, the frequency of going downstairs
with fast speed is less than 2 Hz, and the step time of fast walking is 0.35 s/step [37]. The time windows
were usually 1 s in previous studies [38]. In our research, the sampling rate of accelerometer was 1 Hz.
According to Equation (4), the time window was about 5 s.

In Section 3.3, we proposed context-based classification to improve the accuracy of recognition.
For different values of the probability of recognition error ψ (0.3, 0.2, 0.1, and 0.05), the Accuracyt of
different sliding window size (2k + 1) is shown in Figure 6:
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Figure 6 shows that the Accuracyt has improved with the increase of k-values. For example, the
Accuracyt has improved 8% with the change of value k from 0 to 1 when ψ = 0.3. However, the time
delay will also increase, which may be harmful to the online ARS. Especially when the recognition
error ψ is becoming closer to 0, with the increase of value k, the improvement of Accuracyt is becoming
smaller, but the time delay is becoming greater.

The classification performance of our proposed ARS shows that the largest recognition error ψ is
less than 0.2 and the average recognition error is less than 0.1. As shown in Figure 6, no matter ψ = 0.2
or ψ = 0.1 or ψ = 0.05, the accuracy is improved quickly when k is increased from 0 to 1. However,
the improvement of Accuracyt slows down when k ≥ 1, but the time delay became greater. Therefore,
the slide window size is set as 3 (k = 1).

4.4. The Classification Performance of Proposed ARS

In this section, we assess the performance of proposed classifier and compare it with other
classifiers. The classification accuracy of different sampling rates is also discussed.

4.4.1. Performance of Different Classifiers

In our research, we used the H-SVM model and context-based classification. In order to analyze
the performance of H-SVM, we used the training dataset (Data collection 1), testing dataset (Data
collection 2) and features obtained from the mobile phone. The training and classification were carried
out in Matlab 2014a (MathWorks Inc., Natick, MA, USA), using Libsvm library [39]. The training used
the linear kernel, cost and without cross-validation. The features of H-SVM and the parameters of SVM
used in Matlab were the same as those on the phone. The classification results are shown in Table 3.

Table 3. The performance of the H-SVM classification.

Activity Accuracy

Sitting 97.6%
Standing 94.5%
Walking 91.1%
Running 89.1%
Upstairs 83.8%

Downstairs 89.7%
Average accuracy 90.9%

As shown in Table 3, the average accuracy of six activities is 90.9% and the weakest performance
(the accuracy is only 83.8%) occurred when recognizing climbing upstairs. Upon close examination,
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we found that it was caused by the noise of the signals, which led to the misclassification in some
discrete time windows. We randomly selected 200 continuous recognition results of climbing upstairs
shown in Figure 7. In Figure 7, it can be seen that some activities of climbing upstairs were misclassified
as other activities, such as standing, walking and running.
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Figure 7. The classification results of climbing upstairs activity after H-SVM.

To reduce the impact of the noise and to improve the accuracy, we applied context-based
classification after H-SVM. The results are shown in Table 4. The process of data collection, processing,
training, and classification are all done by the phone. The accuracy values of six activities are increased
by 1.8%, 3.1%, 5.5%, 4.7%, 8.3% and 6.6%, respectively, and the average accuracy of six activities is
increased by 5.1%. The average accuracy of six activities of the proposed ARS is 96.0%, which is high
enough for most applications.

Table 4. The performance of H-SVM and Context-based classification (HSVMCC).

Activity Accuracy

Sitting 99.4%
Standing 97.6%
Walking 96.6%
Running 93.8%
Upstairs 92.1%

Downstairs 96.3%
Average accuracy 96.0%

We compared our method with other classification algorithms such as J48 Naive Bayes (NB)
and Random Forest (RF). The machine learning tool weka [40] was used in the study and the results
are shown in Figure 8. We used the same training datasets (Data collection 1) described before to
obtain the model of other classification algorithms. The universal parameters were selected for these
classification algorithms. For J48, the parameter C was set as 0.25 and M was set as 2. For Random
Forest, the parameter I was set as 100, K was set as 0 and S was set as 1. Then, we used all testing
datasets (Data collection 2) in Table 2 to test the classifiers.
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by the Nyquist theorem. Figure 10 shows the recognition results of ARS using the sampling rate of  
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similar accuracy of using the higher sampling rate that agrees with the Nyquist theorem. 

Figure 8. Comparison of the proposed ARS vs. classification models, J48, NB and Random Forest.

Figure 8 shows that the accuracies of the proposed method (HSVMCC) are more than 90% for all
six activities. However, the accuracies of other algorithms vary between different activities. For sitting,
the Random Forest (RF) achieves a high accuracy of 98.9%, while J48 obtained the lowest accuracy
of 29.5%, but, for the ‘going downstairs’ activity, the accuracy of J48 is 94.8%, while the accuracy of
Random Forest only achieves 76.1%.

Figure 9 shows the average accuracy of six activities of HSVMCC in comparison to Naive Bayes
(NB), J48, and Random Forest (RF). The average classification accuracy for HSVNCC, NB, J48 and
RF are 96%, 82.6%, 73.9%, and 85.6%, respectively. It can be concluded that the proposed HSVMCC
outperformed other classifiers in terms of the average accuracy.
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4.4.2. The Accuracy of Different Sampling Rates

As mentioned before, we can use the sampling rate, which is less than the frequency required
by the Nyquist theorem. Figure 10 shows the recognition results of ARS using the sampling rate
of 1 Hz (less than the frequency required by the Nyquist theorem), 5 Hz (agreed with the Nyquist
theorem), 10 Hz and 50 Hz. It can be observed that the accuracy of using 1 Hz sampling rate and using
5 Hz sampling rate are comparable, or similar. This means that, if the sampling rate is less than the
frequency required by the Nyquist theorem, we can add the sampling period to achieve the similar
accuracy of using the higher sampling rate that agrees with the Nyquist theorem.
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Figure 10 also shows the accuracy has only improved slightly with the increase of the sampling
rate from 1 Hz to 50 Hz, i.e., (1 Hz: 96.2%, 5 Hz: 97.2%, 10 Hz: 97.6%, 50 Hz: 98.0%). The accuracy of
1 Hz (96.2%) is sufficiently high for practical applications.

4.5. The Power Consumption of the Energy-Efficient ARS

The research about the compositions of energy consumption in ARS can help us to assess
whether the proposed energy-efficient strategies are effective or not. Furthermore, the analysis
of the composition of energy consumption in ARS can provide guidance for the researchers in
energy-efficient fields.

An online ARS consists of data collection, data processing and activity recognition. Thus, the main
composition of energy consumption in ARS can be divided into three parts. The first part is the power
consumption used by the sensors. In our research, this part does not contain the data collection.
The second part is the power consumption used in data processing, including data collection,
feature extraction and data storage. The last part is the power consumption used by the activity
recognition algorithm.

In our previous work [32], we proposed that the low sampling rate can decrease the power
consumption. Power consumption for ARS is caused by the sensor running [10] or the total power
consumption [13]. In this paper, we carried out the experiments to analyze the composition of power
consumption in ARS.

We use the other mobile phone (Nexus 5, with an Android 4.4.2 system) for experiments. Firstly,
we restored the phone to factory data to avoid power consumption caused by other applications,
and we installed the requiring applications in the phone. Then, we put the phone in a shaker to do
the experiments.

The experiments can be divided into two categories.
Category 1: we carried out the experiments in the shaker with the setting of 5 mm amplitude and

5–10 Hz variant-frequency vibration and a total of 17 experiments were undertaken.
Category 2: we carried out the experiments in the shaker with the static state and a total of

17 experiments were undertaken.
The purpose of contrasting two states (shaker and static state) is to simulate the real situations.

We used the shaker to simulate the status of moving such as walking. Similarly, the static state was
used to simulate standing and sitting status.

For each category, we conducted four experiments (sampling rate of 1 Hz, 5 Hz, 10 Hz, 50 Hz
respectively) with the setting of running the whole ARS, four experiments with the setting of only
running sensors, four experiments with the setting of running the ARS without activity recognition
and result processing, four experiments with the setting of running the ARS without result processing
and one experiment when the phone was on standby. The details are listed in Table 5.
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Table 5. Experiment setting of each case of study.

Placing State Other Experiment Settings

Static Running the whole ARS
Static Only running Sensors
Static Running the ARS without activity recognition and result processing
Static Running the ARS without result processing
Static The phone on standby

Shaker Running the whole ARS
Shaker Only running Sensors
Shaker Running the ARS without activity recognition and result processing
Shaker Running the ARS without result processing
Shaker The phone on standby

For each experiment, we fixed the mobile phone in the shaker (Figure 11a) and connected an
external signal generator (3.8 V) to the mobile phone (Figure 11b), and then connected the signal
generator with computer to collect data of current (the time is set as 20 min). We turned on the phone
and started the application (five experiment settings shown in Table 5) under the experiment condition
(shaker or static state). In the end, we clicked the button (“start to save data”) to collect the data
of current.
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(d) computer used to control the experiments.

Figure 12 illustrates the average current of ARS at different sampling rates. It shows that the
average current increases with the increase of the sampling rate. The average current is 20.3 mA at
1 Hz, and it is 42.7 mA at 50 Hz when the phone is in the shaker state. The average current is 20.1 mA
at 1 Hz, and it is 41.1 mA at 50 Hz when the phone is in the static state. It also infers that the power
consumption of ARS at rate of 10 Hz has slightly increased compared with 5 Hz. There is a large
increase of power consumption when the sampling rate changes from 10 Hz to 50 Hz. There are
two main reasons. One reason is that the sensor running has a great increase when the rate changes
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from 10 Hz to 50 Hz (as shown in Figure 13). The other reason is the amount of data increase greatly
when the sampling rate increases from 10 Hz to 50 Hz, which causes more power consumption in
data processing.
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Figure 13 also shows the average current of different parts in ARS. The data processing consumes
most of the power in the online ARS. The second large power consumption is the sensor running.
The power consumption of the proposed recognition algorithm is very small and can even be negligible.
With the decrease of the sampling rate, the energy is saved in the sensor running and data processing
for the reason that the amount of data is smaller.
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Figure 13. The average current in the sensor running, data processing and activity recognition. (a) ARS
with a sampling rate of 1 Hz; (b) ARS with a sampling rate of 5 Hz; (c) ARS with a sampling rate of
10 Hz; (d) ARS with a sampling rate of 50 Hz.

We carried out another experiment to evaluate the power performance with different sampling
rates. We turned on the phone when the phone was fully charged, and started phone application at
four different sampling rates (1 Hz, 5 Hz, 10 Hz, 50 Hz) or idle state, respectively. Then, put the phone
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statically on the table, unplugged the charging cable and turned off the screen. After 24 h, we turned
on the screen, stopped the application and recorded the data. Experiments on each sampling rate and
the idle state were repeated four times. We also installed an external application called Battery Monitor
Weight [41] on the phone to record the battery states (the recording interval was 2 min).

Another metric for evaluation Power Consumption Ratio (PCR) is introduced in this paper:

PCR =
PC fs

PC50HZ
(10)

where PC fs represents the power consumption at the sampling rate of fs after 24 h. When the phone is
in idle state, fs is set as 0.

Figure 14 shows the tendency of power consumption at different sampling rates and the idle
state. From the chart, we found that our ARS at the sampling rate of 1 Hz consumed 21% energy in
24 h. The ARS at the sampling rate of 5 Hz consumed 30% battery. The ARS at the sampling rate of
10 Hz and 50 Hz consumed 35% and 52% power, respectively. The battery was expended 5% when
the phone was in an idle state. It can be concluded that the lower sampling rate is, the less power the
phone consumed.
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Table 6 summarizes the PCR in different experiment conditions. From the results presented in
Figure 11 and Table 6, we can conclude that the proposed ARS of using the sampling rate of 1 Hz can
save 17.3% power than the rate of 5 Hz, and there is no significant difference of accuracy achieved in
the activity recognition. Comparing the sampling rates of 5 Hz or 10 Hz or 50 Hz, it can be concluded
that the power consumption becomes higher with the increase of the sampling rate, but there is
little improvement of accuracy. In particular, when the sampling rate increases from 10 Hz to 50 Hz,
the power consumption increases 32.7%, but the accuracy only increases 0.03%. Furthermore, the ARS
by using the sampling rate of 1 Hz can save 59.6% power than ARS by using the sampling rate of
50 Hz. The working time of ARS by using the sampling rate of 1 Hz is almost twice more than that of
using 50 Hz.

Table 6. PCR in different experiment conditions.

Experiment Conditions PCR

Phone in idle state 9.6%
HSVMCC by using a sampling rate of 1 Hz 40.4%
HSVMCC by using a sampling rate of 5 Hz 57.7%

HSVMCC by using a sampling rate of 10 Hz 67.3%
HSVMCC by using a sampling rate of 50 Hz 100%
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5. Conclusions

This work presents a user-independent and energy-efficient ARS with high accuracy using the
sampling rate lower than what is required by the Nyquist theorem. It can achieve an average accuracy
of 96.0% for the recognition of six activities (sitting, standing, walking, running, climbing upstairs,
and going downstairs) using the low sampling rate of 1 Hz. We also theoretically analyze the using
of low sampling rate, which disagrees with the Nyquist theorem. We conclude that using a large
sampling time window and a low sampling rate (such as 1 Hz) can obtain the same signal statistical
properties as using a high sampling rate that meets the requirements of the Nyquist theorem.

Using a low sampling rate can save power consumption. It not only reduces the power
consumption of the sensor running, but also reduces the power consumption of data processing
and activity recognition. Our research shows that the ARS can save 17.3% power when using the
sampling rate of 1 Hz than that of using 5 Hz, and it can save 59.6% power than that of using 50 Hz.
The research has great significance for practical applications.

The H-SVM and context-based classification (HSVMCC) was proposed in our research for activity
recognition. The H-SVM is an improvement of SVM algorithm, which is more efficient and achieves
higher accuracy. The context-based classification is a method that uses the previous recognition results
and the following recognition results to correct the current recognition results. With the integration
of context-based classification presented in the paper, the average accuracy has increased by 5.1%.
In comparison to the one against many multi-class approach proposed by Mortazavi et al. [31] for the
activity recognition, our approach is more energy effective. It needs N × (N−1) SVM node classifiers
for the N class classification in the one against the many multi-class approach. The HSVMCC approach
only requires (N−1) SVM node classifiers for N class classification, and, therefore, consumes less
power. The use of SVM with nonlinear kernel in Mortazavi et al. [31] also requires more computational
cost in comparison to the proposed HSVMCC. Additionally, feature selections prior to the training and
testing in our approach can greatly reduce the dimensions of the H-SVM and thereby further reduce
the energy consumption.

In this paper, we also discussed the power consumption of online ARS in detail. We found that
the most power consumption in the online ARS is the data processing, and the power consumption of
sensor running is in a second-largest place. The power consumption used by recognition algorithms is
relatively low and has very little impact on the power consumption of the entire system.

In this study, we have not yet explored whether the position of the phone can be placed arbitrarily
or not, which is an important question to be further investigated in the future.
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