927 research outputs found

    Bioactive organic/inorganic hybrids with improved mechanical performance

    Get PDF
    New sol-gel functionalized poly-ethylene glycol (PEGM)/SiO2-CaO hybrids were prepared with interpenetrating networks of silica and PEGM through the formation of Si-O-Si bonds. Bioactive and mechanical properties were investigated for a series of hybrids containing varying organic/inorganic ratios and PEG molecular weights. In contrast to the unmodified PEG/SiO2-CaO hybrids, which rapidly dissolved and crumbled, the epoxy modified hybrids exhibited good mechanical properties and bioactivity. The compressive strength and Young's modulus were greater for higher molecular weight PEGM hybrids (PEGM600 compared to PEGM300). Compressive strengths of 138 MPa and 81 MPa were found for the 50: 50 and 60: 40 organic/inorganic hybrid samples respectively, which are comparable with cortical bone. Young's modulus values of āˆ¼800 MPa were obtained for the 50 : 50 and 60 : 40 organic/inorganic hybrids. Bioactivity tests were conducted by immersing the hybrids into simulated body fluid and observing the formation of apatite. Apatite formation was observed within 24 hours of immersion. PEGM600 hybrids showed enhanced apatite formation compared to PEGM300 hybrids. Increased apatite formation was observed with increasing organic/inorganic ratio. 70 : 30 and 60 : 40 hybrids exhibited the greatest apatite formation. All PEGM hybrids samples had good cell viability and proliferation. The 60 : 40 PEGM600 hybrids displayed the optimal combination of bioactivity and mechanical strength. The bioactivity of these hybrids, combined with the enhanced mechanical properties, demonstrate that these materials have significant potential for bone regeneration applications

    Top-down effects of filter-feeding fish and bivalves moderate bottom-up effects of nutrients on phytoplankton in subtropical shallow lakes: An outdoor mesocosm study

    Get PDF
    Biomanipulation has been widely used in the ecological restoration of eutrophic lakes for decades. However, biomanipulation is prone to failure if external nutrient loads are not reduced. In order to explore the importance of filter-feeding fish and bivalves on algal control, an outdoor mesocosm experiment was conducted using different nutrient concentrations. Four treatments simulating daily loads of nutrients in Lake Taihu were studied: current, two times, and three times average daily loads of nutrients with both fish (Aristichthys nobilis) and Asian clam (Corbicula fluminea) and as a control current daily loads without fish or bivalves. Results showed that stocking of filter-feeding fish and bivalves (80 g m-3 bighead carp; 200 g cm-2 clams) at two times daily nutrient loads could effectively control water column Chl a concentrations and phytoplankton biomass. At higher nutrient concentrations (TN & GE; 260 & mu;g L-1 d-1; TP & GE; 10 & mu;g L-1 d-1), top-down control of filter-feeding fish and bivalves was less effective and bottom-up effects resulted in significant increases of Chl a concentration. Thus, as phytoplankton biomass in freshwater ecosystems is determined by both the top-down effects of predators and the bottom-up effects of nutrients, external loadings should be controlled when filter-feeding fish and bivalves are used for algal control to ensure the efficacy of biomanipulation.A combination of filter-feeding fish and clams suppressed phytoplankton, which could not be affected by low-level nutrients.Bottom-up effects at high-level nutrients on phytoplankton overcome top-down effects, indicating that nutrient levels should be controlled to optimize the effect of the intervention.imag

    Design and synthesis of ERĪ± agonists: Effectively reduce lipid accumulation

    Get PDF
    In recent years, the incidence of non-alcoholic fatty liver disease (NAFLD) has been increasing worldwide. Hepatic lipid deposition is a major feature of NAFLD, and insulin resistance is one of the most important causes of lipid deposition. Insulin resistance results in the disruption of lipid metabolism homeostasis characterized by increased lipogenesis and decreased lipolysis. Estrogen receptor Ī± (ERĪ±) has been widely reported to be closely related to lipid metabolism. Activating ERa may be a promising strategy to improve lipid metabolism. Here, we used computer-aided drug design technology to discover a highly active compound, YRL-03, which can effectively reduce lipid accumulation. Cellular experimental results showed that YRL-03 could effectively reduce lipid accumulation by targeting ERĪ±, thereby achieving alleviation of insulin resistance. We believe this study provides meaningful guidance for future molecular development of drugs to prevent and treat NAFLD

    Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    Get PDF
    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 g/mL) and treated with or without arginine (100 g/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1 , IL-6, TNF-, and iNOS. Though the expression of NF-B was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of -casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of -casein and the total casein in bovine mammary epithelial cells

    Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Full text link
    Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG) both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully

    Incidence and influencing factors of fertility concerns in breast cancer in young women: a systematic review and meta-analysis

    Get PDF
    ObjectiveThis systematic review and meta-analysis aimed to evaluate the prevalence and influencing factors of fertility concerns in breast cancer in young women.MethodsA literature search on PubMed, Embase, Web of Science, and Cochrane Library databases was conducted up to February 2023 and was analyzed (Revman 5.4 software) in this study. The papers were chosen based on inclusion standards, and two researchers independently extracted the data. The included studiesā€™ quality was evaluated using criteria set out by the Agency for Healthcare Research and Quality. To identify significant variations among the risk factors, odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were utilized.ResultsA total of 7 studies that included 1579 breast cancer in young women were enrolled in the study. The results showed that for breast cancer in young women, the incidence of fertility concerns 53%(95%CI [0.45,0.58]). The results showed that education (2.65, 95% CI 1.65ā€“5.63), full-time work (0.12, 95% CI 1.03ā€“1.93), fertility intentions (7.84, 95% CI 1.50ā€“37.4), depression level (1.25, 95% CI 1.03ā€“1.5), and endocrine therapy (1.32, 95% CI 1.08ā€“1.62) were risk factors for fertility concerns in young women with BC. Having a partner (0.41, 95% CI 0.33ā€“0.5), ā‰„1 child (0.3, 95% CI 0.22ā€“0.4) were identified as protective factors against fertility concerns in young women with BC.ConclusionsThe incidence of fertility concerns in breast cancer in young women is at a moderately high level. We should pay more attention to the risk factors of fertility concerns to help breast cancer in young women cope with their fertility concerns and promote their psychological well-being

    Effects of Al(III) and Nano-Al13 Species on Malate Dehydrogenase Activity

    Get PDF
    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al13 concentration increase. Our study also found that the effects of Al(III) and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules
    • ā€¦
    corecore