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In recent years, the incidence of non-alcoholic fatty liver disease (NAFLD) has

been increasing worldwide. Hepatic lipid deposition is a major feature of

NAFLD, and insulin resistance is one of the most important causes of lipid

deposition. Insulin resistance results in the disruption of lipid metabolism

homeostasis characterized by increased lipogenesis and decreased lipolysis.

Estrogen receptor α (ERα) has been widely reported to be closely related to lipid

metabolism. Activating ERa may be a promising strategy to improve lipid

metabolism. Here, we used computer-aided drug design technology to

discover a highly active compound, YRL-03, which can effectively reduce

lipid accumulation. Cellular experimental results showed that YRL-03 could

effectively reduce lipid accumulation by targeting ERα, thereby achieving

alleviation of insulin resistance. We believe this study provides meaningful

guidance for future molecular development of drugs to prevent and treat

NAFLD.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) has become the most common

chronic liver disease in the world (Li et al., 2018), affecting more than 30% of

the general population in western countries, and its incidence continues to increase

in other parts of the world (Asrih and Jornayvaz, 2015). NAFLD is a multifactorial

disease triggered by interactions between environment, genetic background, and

metabolic stress (Lonardo et al., 2017). Unlike alcoholic fatty liver disease, patients

have no history of excessive alcohol consumption (Ahmed, 2015). The pathogenic

mechanisms involved in NAFLD are complex and have not yet been fully elucidated

(Xi and Li, 2020; Hrncir et al., 2021). Insulin resistance is one of the key factors in the

development of steatosis (Alam et al., 2016), which leads to an imbalance between

hepatic lipogenesis and metabolism, mainly manifested by increased de novo

lipogenesis and decreased adipose tissue lipolysis (Saponaro et al., 2015). If

NAFLD is not controlled, it will further develop into liver cirrhosis (Zhou et al.,

2020), and may eventually develop into hepatocellular carcinoma, which seriously
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threatens human health (Chrysavgis et al., 2022). However,

there is no drug specifically for the treatment of NAFLD on

the market so far (Ma et al., 2019; Wang et al., 2020). Some

drugs that regulate metabolism, oxidative stress and anti-

fibrosis are still in the clinical stage (Kumar et al., 2021), such

as Pioglitazone (Della Pepa et al., 2021), Elafibranor

(Boeckmans et al., 2022), Saroglitazar (Gawrieh et al.,

2021), Obeticholic acid (Abenavoli et al., 2018; Malnick

et al., 2020), Selonsertib (Reimer et al., 2020) and Vitamin

E (Perumpail et al., 2018) (Figure 1). Therefore, there is an

urgent need to develop novel drugs with high efficacy and

minimal side effects for the treatment of NAFLD. Lipid

metabolism plays a key role in the progression of NAFLD

(Lai et al., 2016), and insulin resistance is one of the most

important causes of lipid deposition. Insulin resistance

results in the disruption of lipid metabolism homeostasis

characterized by increased lipogenesis and decreased lipolysis

(Yao et al., 2016). Estrogen receptor α (ERα) has been widely

reported to be closely related to lipid metabolism, especially

has an important impact on NAFLD (Meda et al., 2022).

Studies have shown that the activation of ERα can effectively

reduce the accumulation of liver lipids (Chen et al., 2020).

Based on this, we plan to use computer-assisted drug design

technology to develop an agonist of ERα, which can

effectively reduce lipid accumulation by targeting ERα,
thereby achieving the purpose of alleviating NAFLD.

2 Results and discussion

For the target of ERα, we used computer-aided drug design

technology to discover a compound 3-(1-(2,4-dichlorobenzyl)-

1H-indazol-3-yl)propanehydrazide (YRL-03) with strong

interaction with ERα (Figure 2). Molecular docking

experiments show that the chlorine atom on the benzene ring

of YRL-03 has a strong electrophilic interaction with the amino

group on the amino acid site F445 of ERα, and the nitrogen atom

on the hydrazide of YRL-03 has a strong electrophilic interaction

with the carbonyl group on the amino acid site L507. In addition,

the benzene ring of YRL-03 has an arene-arene interaction with

the benzene ring of F445.

Subsequently, starting from cheap and easily available indazole,

we used the developed chemical synthesis route to rapidly synthesize

the target molecule YRL-03 by a four-step reaction, and the total

FIGURE 1
Drug molecules that have entered clinical phase III.

FIGURE 2
Computer-assisted molecular docking experiments (PDB:
5GS4).
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SCHEME 1
Chemical synthesis of YRL-03a.

FIGURE 3
Effects of YRL-03 and compound 2 on lipid accumulation. (A) Chemical structure of YRL-03 and compound 2. (B) Control experiment. (C)
Effects of different concentration gradients of YRL-03 and compound 2 on lipid accumulation.
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yield of four-step reaction is 43.6% (Scheme 1). To our delight, the

whole reaction process is mild, no nitrogen protection is required,

and no hazardous reagents are used.
aReaction conditions: (a) NBS, Hexafluoroisopropanol

(HFIP), 0°C, 0.25 h; (b) 2,4-dichloro-1-(chloromethyl)benzene,

K2CO3, acetone, 70°C, 12 h, 78% (two steps); (c) methyl acrylate,

Pd(OAc)2, TEA, PPh3, DMF, 100°C, 18 h, 81%; (d)N2H4. H2O,

EtOH, rt, 12 h, 96%.

With the obtaining target molecule YRL-03 in hand, we began

to try to verify whether this compound has the effect of reducing

lipid accumulation. The cellular model is a model of lipid deposition

in hepatocytes induced by oleic acid. First, hepatocytes were treated

with 125 μm sodium oleate to induce lipid deposition, resulting in a

uniform distribution of lipid droplets in hepatocytes without

significant changes in cell morphology. Second, YRL-03 was

formulated into five gradient concentrations of 6.25, 12.5, 25, 50,

and 100 μm, respectively, to verify the effect of different gradient

concentrations on lipid deposition. Cell experiments showed that

lipid droplets were significantly reduced at 6.25 μm, but little change

at 12.5, 25, 50, and 100 μm. It reveals that YRL-03 had a good effect

of reducing lipid accumulation under the administration of 6.25 μm

gradient concentration.

In order to find more excellent active compunds, we imagined

that if the 3-position alkyl hydrazide of the indazole was changed to

an aryl hydrazide, would it produce better results? Based on this

hypothesis, we synthesized compound 2 by a similar synthetic

method, and tested its effect on lipid accumulation. Regrettably,

the test results showed that compound 2 did not show a good effect

on reducing lipid accumulation. When the gradient concentration

was 6.25 μm, lipid deposition did not decrease but increased. When

the gradient concentration increased to 100 μm, the cell morphology

changed significantly (Figure 3).

Adjudin is a potential non-hormonal male contraceptive

under development (Mruk et al., 2006). We found that

adjudin and its derivatives also have interaction with ER

in previous studies, but the cell experiments showed that they

had little inhibitory effect on estrogen receptors (Yao et al.,

2022). Therefore, we envisioned whether they would have the

opposite effect, being an estrogen receptor agonist. Based on

this idea, we synthesized Adjudin and its derivative 4, and

verified their effects on lipid deposition at different gradient

concentrations (Figure 4, the same control used for

compounds 1, 2, 3 and 4). The results of cell experiments

showed that Adjudin did not reduce lipid deposition at low

FIGURE 4
Effects of compounds 3 and 4 on lipid accumulation. (A) Chemical structure of compounds 3 and 4. (B) Control experiment. (C) Effects of
different concentration gradients of compounds 3 and 4 on lipid accumulation.
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concentrations. When the concentration was increased to

50 and 100 μm, it had a weak effect on reducing lipid

deposition. The low concentration of compound 4 did not

reduce lipid deposition, and when the concentration was

increased to 50 and 100 μm, lipid droplets were reduced, but

cell morphology was changed.

Given that compound 4 has a certain lipid-lowering effect at

50 and 100 μm, we imagined whether changing the hydrazide

substituent on the indole backbone of compound 4 to carboxyl or

amide could enhance its lipid-lowering effect. Based on this idea,

we synthesized compounds 5 and 6, and tested their effects on fat

accumulation (Figure 5). The cell experiments results showed

that the two compounds had no effect on reducing fat

accumulation. Even with increasing their concentration, lipid

droplets are still present in abundance.

The position of the substituent has a strong correlation with

the biological activity of the compound. Therefore, the biological

activity may also change greatly when the position of the

substituent changes. To improve the biological activity of ER-

targeted agonists, we changed the hydrazide position on the

adjudin indazole backbone from 3 to 5 or 6 to obtain compounds

7 and 8, and tested their effects on fat accumulation (Figure 6, the

same control used for compounds 5, 6, 7 and 8), respectively.

Unfortunately, it didn’t end up as we expected. Cell experiments

showed that compounds 7 and 8 did not reduce fat accumulation.

When the gradient concentration of compound 8 was increased

to 50 and 100 μM, the cell morphology changed significantly.

3 Conclusion

In conclusion, we developed an ERα-targeting agonist YRL-
03 by computer-aided drug design technology, which was

effective in reducing lipid accumulation at a concentration of

6.25 μm. Cell experiments showed that YRL-03 could effectively

inhibit lipid accumulation. The specific interaction mode of

YRL-03 and ERα given by molecular docking experiments is

that the chlorine atom on the benzene ring of YRL-03 has a

strong electrophilic interaction with the amino group on the

amino acid site F445 of ERα, and the benzene ring of YRL-03

have aromatic-aromatic interactions with the benzene ring of

F445, the nitrogen atom on the YRL-03 hydrazide has a strong

electrophilic interaction with the carbonyl group on the amino

acid site L507. Notably, the target compound can be obtained

FIGURE 5
Effects of compounds 5 and 6 on lipid accumulation. (A) Chemical structure of compounds 5 and 6. (B) Control experiment. (C) Effects of
different concentration gradients of compounds 5 and 6 on lipid accumulation.
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from cheap and easily available indazole through four-step

reactions, and the whole reaction process is simple to

operate and does not need flammable and explosive

dangerous reagents. Further molecular structure optimization

and toxicology experiments are ongoing in our group. We

believe that the results of this study will provide meaningful

guidance for the future development of drugs that can

effectively treat NAFLD.

4 Experimental section

General Information Unless stated otherwise, all reactions

were conducted in pressure tubes under N2. All solvents were

received from commercial sources without further

purification. Commercially available reagents were used as

received. Non-commercially available substrates were

synthesized following reported protocols. Thin-layer

chromatography (TLC) was visualized using a combination

of UV and potassium permanganate staining techniques.

Silica gel (particle size 40–63 μm) was used for flash

column chromatography. NMR spectra were recorded on

Bruker AV 400 spectrometer at 400 MHz (1H NMR),

100 MHz (13C NMR). Proton and carbon chemical shifts

are reported relative to the solvent used as an internal

reference. The results of molecular docking experiments

were completed using Schrödinger and Molecular

Operating Environment (MOE).

Typical Procedure for Synthesis of Compund 1. Indazole

(5 mmol) was added to a stirred mixture of NBS (5.5 mmol,

1.1 equiv.) in HFIP (15 ml). After 0.25 h at 0°C, the organic layer

was washed successively with aq NaHCO3, and brine, dried over

anhydrous sodium sulphate, filtered, and evaporated in vacuo.

Then the crude material was dissolved in acetone, and to the

mixture 2,4-dichloro-1-(chloromethyl)benzene (5.5 mmol,

1.1 equiv.), K2CO3 (22 mmol, 4.4 equiv.) were added. The

reaction mixture was refluxed overnight at 70°C. Then it was

cooled to room temperature, filtered, and the residue was washed

with acetone. The combined filtrate was concentrated under

vacuum. The solid was dissolved in DCM and filtered to

remove any undissolved solid. The residue was re-crystallized

(DCM/hexane) to afford the pure product 3-bromo-1-(2,4-

dichlorobenzyl)-1H-indazole as a white solid in 78% yield (two

steps).

FIGURE 6
Effects of compounds 7 and 8 on lipid accumulation. (A) Chemical structure of compounds 7 and 8. (B) Control experiment. (C) Effects of
different concentration gradients of compounds 7 and 8 on lipid accumulation.
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To a glass pressure tube were added 3-bromo-1-(2,4-

dichlorobenzyl)-1H-indazole (0.5 mmol, 1.0 equiv.), Pd

(OAc)2 (0.05 mmol, 10 mol%), PPh3 (0.1 mmol, 20 mol%)

and anhydrous DMF (2 ml) under N2. and then TEA

(1.5 mmol, 3.0 equiv.) and methyl acrylate (5 mmol,

10.0 equiv.) were added. The resulting solution was stirred

at 100°C for 18 h. Cool the reaction mixture and dilute with

EA. Wash with waterand dry over Na2SO4. Evaporate and

purify the residue by column chromatography to obtain the

product methyl (E)-3-(1-(2,4-dichlorobenzyl)-1H-indazol-3-

yl)acrylate in 81% yield.

To a solution of methyl (E)-3-(1-(2,4-dichlorobenzyl)-1H-

indazol-3-yl)acrylate (1 mmol, 1.0 equiv.) in ethanol at room

temperature was added hydrazine hydrate (50 mmol,

50.0 equiv.). The reaction mixture was stirred at room

temperature over night. The volatiles were removed under

reduced pressure and the crude mass was diluted with

dichloromethane, washed with water, brine, dried over

anhydrous sodium sulphate and the solvent was removed

under reduced pressure to obtain the crude product. The

residue was purified by column chromatography to afford the

pure product 1 (YRL-03) as a white solid in 96% yield.

Cell Culture. Human hepatic L02 cells were obtained from

the American Type Culture Collection, and cultured with

Roswell Park Memorial Institute (RPMI) 1,640 medium

(Hyclone, UT, United States) supplemented with 10% fetal

bovine serum (Biological Industries, CT, United States) and

1% penicillin/streptomycin (Hyclone, UT, United States).

Oil red O staining. L02 cells were seeded in 24-well plates and

induced with sodium oleate at 100 μm for 24 h when reaching

50% confluence. Then cells were treated with compounds at 6.25,

12.5, 25, 50, 100 μm for 24 h. Then cells were washed with

phosphate buffer saline (PBS) and fixed with 4%

paraformaldehyde (PFA, Sangon, Shanghai, China) for 20 min

at room temperature, stained with freshly diluted oil red O

staining solution (3 mg/ml) for 45 min, rinsed with PBS, and

sealed with glycerin (Chu et al., 2019). Lipid droplets in cells were

captured by an optical microscope (Zeiss).

3-(1-(2,4-dichlorobenzyl)-1H-indazol-3-yl)propanehydrazide

(1).White solid (61% yield, four steps). 1HNMR (400MHz, CDCl3)

δ 7.72 (d, J = 8.0 Hz, 1 H), 7.42 (d, J = 2.0 Hz, 1 H), 7.40-7.35 (m,

1 H), 7.30-7.28 (m, 1 H), 7.18-7.14 (m, 2 H), 7.09 (dd, J = 8.0, 1.6 Hz,

1 H), 6.60 (d, J = 8.4 Hz, 1 H), 5.59 (s, 2 H), 3.83 (s, 2 H), 3.34 (t, J =

7.2 Hz, 2 H), 2.74 (t, J = 7.2 Hz, 2 H).13C NMR (100MHz, CDCl3) δ

173.3, 144.8, 140.8, 134.0, 133.4, 133.0, 129.3, 129.3, 127.5, 127.1,

122.9, 120.6, 120.4, 109.1, 49.3, 33.0, 22.6.

3-(1-(2,4-dichlorobenzyl)-1H-indazol-3-yl)benzohydrazide

(2).[23] White solid (77% yield, two steps). 1H NMR (400 MHz,

CDCl3) δ 8.35 (t, J = 1.6 Hz, 1 H), 8.15 (dt, J = 7.6, 1.2 Hz, 1 H),

8.06 (d, J = 8.0 Hz, 1 H), 7.78 (dt, J = 8.0, 1.2 Hz, 1 H), 7.59 (t, J =

7.6 Hz, 1 H), 7.49 (s, 1 H), 7.44 (d, J = 2.4 Hz, 1 H), 7.42-7.37 (m,

2 H), 7.29-7.27 (m, 1 H), 7.09 (dd, J = 8.4, 2.4 Hz, 1 H), 6.73-6.71

(m, 1 H), 5.72 (s, 2 H), 4.14 (s, 2 H).13C NMR (100 MHz,

DMSO)δ 165.9, 142.9, 141.4, 134.2, 133.9, 133.3, 133.21,

133.16, 130.7, 129.6, 129.2, 129.1, 127.8, 127.0, 126.6, 125.5,

121.9, 121.2, 120.9, 110.3, 49.3.
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