45 research outputs found

    Reaper is regulated by IAP-mediated ubiquitination

    Get PDF
    In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance

    Influence of Mg Deficiency on the Superconductivity in MgB2 Thin Films Grown by using HPCVD

    Full text link
    The effects of Mg deficiency in MgB2 films grown by using hybrid physical-chemical vapor deposition were investigated after vacuum annealing at various temperatures. High-quality MgB2 films grown on c-cut Al2O3 substrates with different superconducting transition temperatures (Tc) of 40.2 and 41 K were used in this study. As the annealing temperature was increased from 200 to 800 C, the Mg contents in the MgB2 films systemically decreased, but the Tc's did not change, within 0.12 K, until the annealing temperature reached 700 C. For MgB2 films annealed at 800 C for 30 min, however, no superconductivity was observed, and the temperature dependence of the resistivity showed a semiconducting behavior. We also found that the residual resistivity ratio decreased with increasing annealing temperature.Comment: 7 pages including 4 figure

    Non-Hodgkin's lymphoma of the sphenoid sinus presenting as isolated oculomotor nerve palsy

    Get PDF
    BACKGROUND: Solitary involvement of the sphenoid sinus has rarely been reported in non-Hodgkin's lymphoma. Isolated oculomotor nerve palsy is uncommon as an initial presentation of malignant tumors of the sphenoid sinus. CASE PRESENTATION: A 53-year-old woman presented with a three-month history of headache and diplopia. Neurological examination revealed complete left oculomotor nerve palsy. Magnetic Resonance Imaging (MRI) demonstrated a homogenous soft-tissue lesion occupying the left sphenoid sinus and invading the left cavernous sinus. The patient underwent transsphenoidal biopsy and the lesion was histologically diagnosed as non-Hodgkin's lymphoma, diffuse large B-cell type. Tumor cells were positive for CD20 and negative for CD3. Following six cycles of chemotherapy, the left oculomotor nerve palsy that had been previously observed was completely resolved. There was no enhancing lesion noted on follow-up MRI. CONCLUSION: It is important to recognize that non-Hodgkin's lymphoma of the sphenoid sinus can present with isolated oculomotor nerve palsy, although it is extremely rare. The cranial nerve deficits can resolve dramatically after chemotherapy.ope

    The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers

    Get PDF
    Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-{kappa}B homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways

    The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process

    Get PDF
    Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation

    Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating

    Get PDF
    We show that acetone-derived graphene coating can effectively enhance the corrosion efficiency of copper (Cu) in a seawater environment (0.5-0.6 M (???3.0-3.5%) sodium chloride). By applying a drop of acetone (???20 ??l cm-2) on Cu surfaces, rapid thermal annealing allows the facile and rapid synthesis of graphene films on Cu surfaces with a monolayer coverage of almost close to ???100%. Under optimal growth conditions, acetone-derived graphene is found to have a relatively high crystallinity, comparable to common graphene grown by chemical vapor deposition. The resulting graphene-coated Cu surface exhibits 37.5 times higher corrosion resistance as compared to that of mechanically polished Cu. Further, investigation on the role of graphene coating on Cu surfaces suggests that the outstanding corrosion inhibition efficiency (IE) of 97.4% is obtained by protecting the underlying Cu against the penetration of both dissolved oxygen and chlorine ions, thanks to the closely spaced atomic structure of the graphene sheets. The increase of graphene coating thickness results in the enhancement of the overall corrosion IE up to ???99%, which can be attributed to the effective blocking of the ionic diffusion process via grain boundaries. Overall, our results suggest that the acetone-derived graphene film can effectively serve as a corrosion-inhibiting coating in the seawater level and that it may have a promising role to play for potential offshore coating.close0
    corecore