11 research outputs found

    Gut Microbiota Reshaped by Pectin Treatment Improves Liver Steatosis in Obese Mice

    No full text
    Pectin, a soluble fiber, improves non-alcoholic fatty-liver disease (NAFLD), but its mechanisms are unclear. We aimed to investigate the role of pectin-induced changes in intestinal microbiota (IM) in NAFLD. We recovered the IM from mice fed a high-fat diet, treated or not with pectin, to perform a fecal microbiota transfer (FMT). Mice fed a high-fat diet, which induces NAFLD, were treated with pectin or received a fecal microbiota transfer (FMT) from mice treated with pectin before (preventive FMT) or after (curative FMT) being fed a high-fat diet. Pectin prevented the development of NAFLD, induced browning of adipose tissue, and modified the IM without increasing the abundance of proteobacteria. Preventive FMT also induced browning of white adipose tissue but did not improve liver steatosis, in contrast to curative FMT, which induced an improvement in steatosis. This was associated with an increase in the concentration of short-chain fatty acids (SCFAs), in contrast to preventive FMT, which induced an increase in the concentration of branched SCFAs. Overall, we show that the effect of pectin may be partially mediated by gut bacteria

    Effects of Five Filamentous Fungi Used in Food Processes on In Vitro and In Vivo Gut Inflammation

    No full text
    International audienceFood processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota. We undertook a comprehensive characterization of five mold strains, Penicillium camemberti, P. nalgiovense, P. roqueforti, Fusarium domesticum, and Geotrichum candidum used in food processes, on their ability to trigger or protect intestinal inflammation using in vitro human cell models and in vivo susceptibility to sodium dextran sulfate-induced colitis. Comparison of spore adhesion to epithelial cells showed a very wide disparity in results, with F. domesticum and P. roqueforti being the two extremes, with almost no adhesion and 20% adhesion, respectively. Interaction with human immune cells showed mild pro-inflammatory properties of all Penicillium strains and no effect of the others. However, the potential anti-inflammatory abilities detected for G. candidum in vitro were not confirmed in vivo after oral gavage to mice before and during induced colitis. According to the different series of experiments carried out in this study, the impact of the spores of these molds used in food production is limited, with no specific beneficial or harmful effect on the gut

    Cyberlindnera jadinii and Kluyveromyces lactis, two fungi used in food processes, have potential probiotic effects on gut inflammation

    No full text
    International audienceMany strains have been used and selected by the food industry for their capacities to ferment, produce flavors, or produce heterologous molecules. Very little is known about the diversity of foodborne yeasts and their potential effect on gut microbiota and gut health. We initiated a complete characterization of five strains belonging to five species with a long history of safe use in food: Cyberlindnera jadinii, Debaryomyces hansenii, Kazachstania unispora, Kluyveromyces lactis, and Pichia membra nifaciens, with a focus on their capacity to protect against gut inflammation using an in vivo dextran sodium sulfate-induced colitis model in mice. C. jadinii and K. lactis living cells showed a clear reduction in mouse sensitivity to colitis in vivo. Interestingly, we observed that C. jadinii had the capacity to survive transit in the gut, while K. lactis did not. We demonstrated that C. jadinii was unable to efficiently adhere to epithelial cells and did not survive more than 24 to 48 h in the gut. Transcriptomic analysis using NanoString technology suggested a potential role of IL-8 through Mif and Fkbp5 in the effect of C. jadinii on the immune system. Bacterial and fungal microbiota characterization showed a modification of both microbiota after C. jadinii treatment, with a significant increase in positive microorganisms and a decrease in pathobionts. Altogether, these data suggest that both C. jadinii and K. lactis strains have potential as probiotic yeast strains to fight against inflammation in the gut, but further studies are needed to understand the mechanisms by which these strains act on gut health

    Modulation of the Bile Acid Enterohepatic Cycle by Intestinal Microbiota Alleviates Alcohol Liver Disease

    No full text
    Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion

    Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis

    No full text
    International audienceBackground & aims: Bile-acid metabolism and the intestinal microbiota are impaired in alcohol-related liver disease. Activation of the bile-acid receptor TGR5 (or GPBAR1) controls both biliary homeostasis and inflammatory processes. We examined the role of TGR5 in alcohol-induced liver injury in mice.Methods: We used TGR5-deficient (TGR5-KO) and wild-type (WT) female mice, fed alcohol or not, to study the involvement of liver macrophages, the intestinal microbiota (16S sequencing), and bile-acid profiles (high-performance liquid chromatography coupled to tandem mass spectrometry). Hepatic triglyceride accumulation and inflammatory processes were assessed in parallel.Results: TGR5 deficiency worsened liver injury, as shown by greater steatosis and inflammation than in WT mice. Isolation of liver macrophages from WT and TGR5-KO alcohol-fed mice showed that TGR5 deficiency did not increase the pro-inflammatory phenotype of liver macrophages but increased their recruitment to the liver. TGR5 deficiency induced dysbiosis, independently of alcohol intake, and transplantation of the TGR5-KO intestinal microbiota to WT mice was sufficient to worsen alcohol-induced liver inflammation. Secondary bile-acid levels were markedly lower in alcohol-fed TGR5-KO than normally fed WT and TGR5-KO mice. Consistent with these results, predictive analysis showed the abundance of bacterial genes involved in bile-acid transformation to be lower in alcohol-fed TGR5-KO than WT mice. This altered bile-acid profile may explain, in particular, why bile-acid synthesis was not repressed and inflammatory processes were exacerbated.Conclusions: A lack of TGR5 was associated with worsening of alcohol-induced liver injury, a phenotype mainly related to intestinal microbiota dysbiosis and an altered bile-acid profile, following the consumption of alcohol

    Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury

    No full text
    International audienceObjective: Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions.Design: We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice.Results: Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists.Conclusions: Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    No full text
    International audienceThe aim of this study was to estimate the incidence of COVID-19 disease in the French national population of dialysis patients, their course of illness and to identify the risk factors associated with mortality. Our study included all patients on dialysis recorded in the French REIN Registry in April 2020. Clinical characteristics at last follow-up and the evolution of COVID-19 illness severity over time were recorded for diagnosed cases (either suspicious clinical symptoms, characteristic signs on the chest scan or a positive reverse transcription polymerase chain reaction) for SARS-CoV-2. A total of 1,621 infected patients were reported on the REIN registry from March 16th, 2020 to May 4th, 2020. Of these, 344 died. The prevalence of COVID-19 patients varied from less than 1% to 10% between regions. The probability of being a case was higher in males, patients with diabetes, those in need of assistance for transfer or treated at a self-care unit. Dialysis at home was associated with a lower probability of being infected as was being a smoker, a former smoker, having an active malignancy, or peripheral vascular disease. Mortality in diagnosed cases (21%) was associated with the same causes as in the general population. Higher age, hypoalbuminemia and the presence of an ischemic heart disease were statistically independently associated with a higher risk of death. Being treated at a selfcare unit was associated with a lower risk. Thus, our study showed a relatively low frequency of COVID-19 among dialysis patients contrary to what might have been assumed
    corecore