70 research outputs found

    One-pot synthesis, crystallization and deracemization of isoindolinones from achiral reactants

    Get PDF
    The synthesis, crystallization, and complete solid-state deracemization of isoindolinones was realized in one pot simply by grinding achiral reaction components in a suitable solvent with an achiral catalyst. Previously, this concept was applied to a reversible reaction, but herein we showed that it could also be used in combination with reactions in which product formation is irreversible. A controlled final configuration of the product was obtained by using small amounts of chiral additives or seed crystals of the product

    Screening approach for identifying cocrystal types and resolution opportunities in complex chiral multicomponent systems

    Get PDF
    Cocrystallization of racemic-compound-forming chiral molecules can result in conglomerate cocrystals or diastereomerically related cocrystals, which enable the application of chiral separation techniques such as preferential crystallization and classic resolution. Here, a systematic method to identify the types and phase diagrams of cocrystals formed by chiral target compounds and candidate coformers in a particular solvent system is presented, which allows the design of suitable chiral resolution processes. The method is based on saturation temperature measurements of specific solution compositions containing both enantiomers of chiral molecules and a coformer. This method is applied to analyze three different systems. For racemic phenylalanine (Phe) in water/ethanol mixtures one of the enantiomers selectively cocrystallizes with the opposite enantiomer of valine (Val), forming the more stable diastereomerically related cocrystal. The racemic compound ibuprofen crystallizes with the nonchiral coformer 1,2-bis(4-pyridyl)ethane (BPN) as racemic compound cocrystals. More interestingly, when it is combined with trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (BPE), the racemic compound ibuprofen cocrystallizes as a conglomerate, which in principle enables the application of preferential crystallization of this racemic compound. The systematic method shows the benefit of using pseudo-binary phase diagrams. Such pseudo-binary phase diagrams depict the saturation temperature on a very specific route through the quaternary phase diagram, allowing the identification of various cocrystal types as well as the corresponding cocrystallization conditions. The systematic method can be used to identify a suitable solid phase for chiral separation, and the obtained phase diagram information enables the performance of a crystallization-mediated chiral resolution process design. Such a guideline for a chiral resolution process design has never been reported for conglomerate cocrystal systems such as IBU:BPE, presented in this study

    Towards continuous deracemization via racemic crystal transformation monitored by in-situ Raman spectroscopy

    Get PDF
    In this work, we demonstrate a semi-batch solid-state deracemization process for N-(2- chlorobenzylidene)-phenylglycine amide (NCPA), a complex chiral polymorphic system that involves three types of crystalline racemates (racemic compound and conglomerate forms I and II). In this process, gradually fed metastable racemic compound crystals are converted in situ to crystals of the preferred (seeded) enantiomer under grinding conditions through a series of solvent- mediated transformations in a racemizing solution. The phase diagram for this system shows that while conglomerate form II is stable at the conditions examined (acetonitrile at 21°C), form I crystals of a single enantiomer (used as seeds) are unstable at (nearly) racemic compositions and convert to the racemic compound upon addition of the racemization catalyst. Thus, care needs to be exercised in order to fully convert form I to form II before addition of the racemization catalyst in order to prevent the undesired crystallization of the racemic compound. This can be achieved by adding a small amount of water, which is found to enhance the nucleation and growth kinetics of the most stable conglomerate form II, eventually leading to complete deracemization. Importantly, we show that this special deracemization process can be easily monitored online by Raman spectroscopy, which gives access to the evolution of the solid phase composition. For the studied system, this information can in turn be used to directly estimate the solid-phase enantiomeric excess online throughout the process, as long as conglomerate crystals of the counter enantiomer do not form

    Report on the sixth blind test of organic crystal-structure prediction methods

    No full text
    The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms

    Raman and infrared spectra of the incommensurate crystal Na2C03

    Get PDF
    Contains fulltext : 92709.pdf (publisher's version ) (Open Access

    Growth and morphology of c-60 crystals

    Get PDF
    Contains fulltext : 99036.pdf (publisher's version ) (Open Access

    Raman and far infrared-spectroscopy of the incommensurate structure NA2C03

    Get PDF
    Contains fulltext : 92718.pdf (publisher's version ) (Open Access
    • …
    corecore