132 research outputs found

    Semantic and Acoustic Markers in Schizophrenia-Spectrum Disorders:A Combinatory Machine Learning Approach

    Get PDF
    BACKGROUND AND HYPOTHESIS: Speech is a promising marker to aid diagnosis of schizophrenia-spectrum disorders, as it reflects symptoms like thought disorder and negative symptoms. Previous approaches made use of different domains of speech for diagnostic classification, including features like coherence (semantic) and form (acoustic). However, an examination of the added value of each domain when combined is lacking as of yet. Here, we investigate the acoustic and semantic domains separately and combined. STUDY DESIGN: Using semi-structured interviews, speech of 94 subjects with schizophrenia-spectrum disorders (SSD) and 73 healthy controls (HC) was recorded. Acoustic features were extracted using a standardized feature-set, and transcribed interviews were used to calculate semantic word similarity using word2vec. Random forest classifiers were trained for each domain. A third classifier was used to combine features from both domains; 10-fold cross-validation was used for each model. RESULTS: The acoustic random forest classifier achieved 81% accuracy classifying SSD and HC, while the semantic domain classifier reached an accuracy of 80%. Joining features from the two domains, the combined classifier reached 85% accuracy, significantly improving on separate domain classifiers. For the combined classifier, top features were fragmented speech from the acoustic domain and variance of similarity from the semantic domain. CONCLUSIONS: Both semantic and acoustic analyses of speech achieved ~80% accuracy in classifying SSD from HC. We replicate earlier findings per domain, additionally showing that combining these features significantly improves classification performance. Feature importance and accuracy in combined classification indicate that the domains measure different, complementing aspects of speech.</p

    Active Selection of Classification Features

    Full text link
    Some data analysis applications comprise datasets, where explanatory variables are expensive or tedious to acquire, but auxiliary data are readily available and might help to construct an insightful training set. An example is neuroimaging research on mental disorders, specifically learning a diagnosis/prognosis model based on variables derived from expensive Magnetic Resonance Imaging (MRI) scans, which often requires large sample sizes. Auxiliary data, such as demographics, might help in selecting a smaller sample that comprises the individuals with the most informative MRI scans. In active learning literature, this problem has not yet been studied, despite promising results in related problem settings that concern the selection of instances or instance-feature pairs. Therefore, we formulate this complementary problem of Active Selection of Classification Features (ASCF): Given a primary task, which requires to learn a model f: x-> y to explain/predict the relationship between an expensive-to-acquire set of variables x and a class label y. Then, the ASCF-task is to use a set of readily available selection variables z to select these instances, that will improve the primary task's performance most when acquiring their expensive features z and including them to the primary training set. We propose two utility-based approaches for this problem, and evaluate their performance on three public real-world benchmark datasets. In addition, we illustrate the use of these approaches to efficiently acquire MRI scans in the context of neuroimaging research on mental disorders, based on a simulated study design with real MRI data.Comment: Accepted for publication at the 19th Intelligent Data Analysis Symposium, 2021. The final authenticated publication will be made available online at springer.co

    Contributing factors to advanced brain aging in depression and anxiety disorders

    Get PDF
    Depression and anxiety are common and often comorbid mental health disorders that represent risk factors for aging-related conditions. Brain aging has shown to be more advanced in patients with major depressive disorder (MDD). Here, we extend prior work by investigating multivariate brain aging in patients with MDD, anxiety disorders, or both, and examine which factors contribute to older-appearing brains. Adults aged 18–57 years from the Netherlands Study of Depression and Anxiety underwent structural MRI. A pretrained brain-age prediction model based on >2000 samples from the ENIGMA consortium was applied to obtain brain-predicted age differences (brain PAD, predicted brain age minus chronological age) in 65 controls and 220 patients with current MDD and/or anxiety. Brain-PAD estimates were associated with clinical, somatic, lifestyle, and biological factors. After correcting for antidepressant use, brain PAD was significantly higher in MDD (+2.78 years, Cohen’s d = 0.25, 95% CI −0.10-0.60) and anxiety patients (+2.91 years, Cohen’s d = 0.27, 95% CI −0.08-0.61), compared with controls. There were no significant associations with lifestyle or biological stress systems. A multivariable model indicated unique contributions of higher severity of somatic depression symptoms (b = 4.21 years per unit increase on average sum score) and antidepressant use (−2.53 years) to brain PAD. Advanced brain aging in patients with MDD and anxiety was most strongly associated with somatic depressive symptomatology. We also present clinically relevant evidence for a potential neuroprotective antidepressant effect on the brain-PAD metric that requires follow-up in future research

    Individualized prediction of three- and six-year outcomes of psychosis in a longitudinal multicenter study:a machine learning approach

    Get PDF
    Schizophrenia and related disorders have heterogeneous outcomes. Individualized prediction of long-term outcomes may be helpful in improving treatment decisions. Utilizing extensive baseline data of 523 patients with a psychotic disorder and variable illness duration, we predicted symptomatic and global outcomes at 3-year and 6-year follow-ups. We classified outcomes as (1) symptomatic: in remission or not in remission, and (2) global outcome, using the Global Assessment of Functioning (GAF) scale, divided into good (GAF &gt;= 65) and poor (GAF &lt; 65). Aiming for a robust and interpretable prediction model, we employed a linear support vector machine and recursive feature elimination within a nested cross-validation design to obtain a lean set of predictors. Generalization to out-of-study samples was estimated using leave-one-site-out cross-validation. Prediction accuracies were above chance and ranged from 62.2% to 64.7% (symptomatic outcome), and 63.5-67.6% (global outcome). Leave-one-site-out cross-validation demonstrated the robustness of our models, with a minor drop in predictive accuracies of 2.3% on average. Important predictors included GAF scores, psychotic symptoms, quality of life, antipsychotics use, psychosocial needs, and depressive symptoms. These robust, albeit modestly accurate, long-term prognostic predictions based on lean predictor sets indicate the potential of machine learning models complementing clinical judgment and decision-making. Future model development may benefit from studies scoping patient's and clinicians' needs in prognostication.</p

    Does having a twin-brother make for a bigger brain?

    Get PDF
    Objective: Brain volume of boys is larger than that of girls by ∼10%. Prenatal exposure to testosterone has been suggested in the masculinization of the brain. For example, in litter-bearing mammals intrauterine position increases prenatal testosterone exposure through adjacent male fetuses, resulting in masculinization of brain morphology. Design: The influence of intrauterine presence of a male co-twin on masculinization of human brain volume was studied in 9-year old twins. Methods: Magnetic resonance imaging brain scans, current testosterone, and estradiol levels were acquired from four groups of dizygotic (DZ) twins: boys from same-sex twin-pairs (SSM), boys from opposite-sex twin-pairs (OSM), girls from opposite-sex twin-pairs (OSF), and girls from same-sex twin-pairs (SSF; n=119 individuals). Data on total brain, cerebellum, gray and white matter volumes were examined. Results: Irrespective of their own sex, children with a male co-twin as compared to children with a female co-twin had larger total brain (+2.5%) and cerebellum (+5.5%) volumes. SSM, purportedly exposed to the highest prenatal testosterone levels, were found to have the largest volumes, followed by OSM, OSF and SSF children. Birth weight partly explained the effect on brain volumes. Current testosterone and estradiol levels did not account for the volumetric brain differences. However, the effects observed in children did not replicate in adult twins. Conclusions: Our study indicates that sharing the uterus with a DZ twin brother increases total brain volume in 9-year olds. The effect may be transient and limited to a critical period in childhood. © 2009 European Society of Endocrinology

    The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    Get PDF
    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain

    White Matter Development in Early Puberty: A Longitudinal Volumetric and Diffusion Tensor Imaging Twin Study

    Get PDF
    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ∼85%), surface area (∼85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = –0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization

    Functional Diffusion Tensor Imaging: Measuring Task-Related Fractional Anisotropy Changes in the Human Brain along White Matter Tracts

    Get PDF
    Functional neural networks in the human brain can be studied from correlations between activated gray matter regions measured with fMRI. However, while providing important information on gray matter activation, no information is gathered on the co-activity along white matter tracts in neural networks.We report on a functional diffusion tensor imaging (fDTI) method that measures task-related changes in fractional anisotropy (FA) along white matter tracts. We hypothesize that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity although the exact physiological underpinnings of the measured FA changes remain to be elucidated. As expected, these changes are very small as compared to the physiological noise and a reliable detection of the signal change would require a large number of measurements. However, a substantial increase in signal-to-noise ratio was achieved by pooling the signal over the complete fiber tract. Adopting such a tract-based statistics enabled us to measure the signal within a practically feasible time period. Activation in the sensory thalamocortical tract and optic radiation in eight healthy human subjects was found during tactile and visual stimulation, respectively.The results of our experiments indicate that these FA changes may serve as a functional contrast mechanism for white matter. This noninvasive fDTI method may provide a new approach to study functional neural networks in the human brain
    • …
    corecore