54 research outputs found
Lesson design for formative assessment
The potential power of formative assessment to enhance student learning is clear from research. This, however, demands a different learning culture and a broader range of teaching approaches than are found in most mathematics classrooms. Earlier efforts to introduce formative assessment for learning have focused on teacher professional development. Here we describe a major project that explores how this change may be stimulated and supported by teaching materials that embody the principles of formative assessment. We describe the design challenges we faced, the previous research and development experience we drew upon, and the principles that directed our designs. We illustrate these elements with examples of the products themselves, some outcomes and lessons learned
Lesson design for formative assessment
The potential power of formative assessment to enhance student learning is clear from research. This, however, demands a different learning culture and a broader range of teaching approaches than are found in most mathematics classrooms. Earlier efforts to introduce formative assessment for learning have focused on teacher professional development. Here we describe a major project that explores how this change may be stimulated and supported by teaching materials that embody the principles of formative assessment. We describe the design challenges we faced, the previous research and development experience we drew upon, and the principles that directed our designs. We illustrate these elements with examples of the products themselves, some outcomes and lessons learned
Ways to teach modelling—a 50 year study
This article describes a sequence of design research projects, some exploratory others more formal, on the teaching of modelling and the analysis of modelling skills. The initial motivation was the author’s observation that the teaching of applied mathematics in UK high schools and universities involved no active modelling by students, but was entirely focused on their learning standards models of a restricted range of phenomena, largely from Newtonian mechanics. This did not develop the numeracy/mathematical literacy that was so clearly important for future citizens. Early explorations started with modelling workshops with high school teachers and mathematics undergraduates, observed and analysed—in some case using video. The theoretical basis of this work has been essentially heuristic, though the Shell Centre studies included, for example, a detailed analysis of formulation processes that has not, as so often, been directly replicated. Recent work has focused on developing a formative assessment approach to teaching modelling that has proved both successful and popular. Finally, the system-level challenges in trying to establish modelling as an integral part of mathematics curricula are briefly discussed
Σ0→Λ0+e++e- and the Σ0-Λ0 relative parity
The Σ0-Λ0 relative parity may be measured by observing correlation of polarizations in the process Σ0→Λ0+γ. Internal conversion of the photon into an electron pair (Dalitz pair) serves as an analyzer which selects polarized photons. Theoretical results are presented which show that the Dalitz-pair decay mode of polarized Σ0's may be used to measure the Σ0-Λ0 relative parity
SMART APPLIANCE SYSTEM
The invention describes a smart appliance system. The system receives instructions from a user over a network to control an appliance. The system then transmits these instructions to the appliance to control the appliance. The system causes the appliance to operate according to the transmitted instructions
Assessment in the service of learning: challenges and opportunities or Plus ça Change, Plus c’est la même Chose
This paper begins with a brief overview of literature indicating that, although there have been significant advances in the field’s capacity to conduct both formative and summative assessments over the past decades, those advances have not been matched by comparable impact. The bulk of the paper is devoted to a series of examples from the Mathematics Assessment Project that illustrate issues of methods, and the unrealized potential for advances
Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors
The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation
Neptunism and transformism:Robert Jameson and other evolutionary theorists in early nineteenth-century Scotland
This paper sheds new light on the prevalence of evolutionary ideas in Scotland in the early nineteenth century and establish what connections existed between the espousal of evolutionary theories and adherence to the directional history of the earth proposed by Abraham Gottlob Werner and his Scottish disciples. A possible connection between Wernerian geology and theories of the transmutation of species in Edinburgh in the period when Charles Darwin was a medical student in the city was suggested in an important 1991 paper by James Secord. This study aims to deepen our knowledge of this important episode in the history of evolutionary ideas and explore the relationship between these geological and evolutionary discourses. To do this it focuses on the circle of natural historians around Robert Jameson, Wernerian geologist and professor of natural history at the University of Edinburgh from 1804 to 1854. From the evidence gathered here there emerges a clear confirmation that the Wernerian model of geohistory facilitated the acceptance of evolutionary explanations of the history of life in early nineteenth-century Scotland. As Edinburgh was at this time the most important center of medical education in the English-speaking world, this almost certainly influenced the reception and development of evolutionary ideas in the decades that followed.</p
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
- …