1,667 research outputs found

    Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures

    Full text link
    Piezoelectric quartz tuning forks are investigated in view of their use as force sensors in dynamic mode scanning probe microscopy at temperatures down to 1.5 K and in magnetic fields up to 8 T. The mechanical properties of the forks are extracted from the frequency dependent admittance and simultaneous interferometric measurements. The performance of the forks in a cryogenic environment is investigated. Force-distance studies performed with these sensors at low temperatures are presented

    Stability Analysis of Converter Control Modes in Low-Inertia Power Systems

    Get PDF
    This paper deals with the small-signal stability analysis of converter control modes in low-inertia power systems. For this purpose, a detailed differential-algebraic equation model of the voltage source converter and its control scheme is developed. Both grid-forming and grid-feeding concepts have been considered, as well as different active power controllers based on traditional droop and virtual inertia emulation. An eigenvalue analysis of the linearized state-space system is conducted and the performance of different control configurations is compared. Furthermore, various bifurcation studies have been completed and conclusions on stability margins have been drawn with respect to control sensitivity and robustness

    On the concepts of radial and angular kinetic energies

    Get PDF
    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wavefunction picture and the Weyl-Wigner phase-space picture. Thus, the radial and angular kinetic energies are different quantities in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom.Comment: 10 pages, 2 figures, accepted by Phys. Rev.

    Quantitative Impact Evaluation of the WINNN Programme – Summary Report: Operations Research and Impact Evaluation

    Get PDF
    This report presents the results of the quantitative impact evaluation of the Working to Improve Nutrition in Northern Nigeria (WINNN) programme. The impact evaluation is conducted by the Operations Research and Impact Evaluation (ORIE) project. ORIE is responsible for undertaking operations research and assessing the impact of the WINNN programme and it is led by Oxford Policy Management (OPM) and implemented in collaboration with other institutions.UK Department for International Developmen

    Reductive Transformations of Anthropogenic Chemicals in Natural and Technical Systems

    Get PDF
    Reductive transformation reactions of chemical pollutants (e.g., polyhalogenated hydrocarbons, aromatic azo and nitro compounds, chromium(VI) species) in the environment are important both from an ecotoxicological and from an environmental technology point of view. Using well-defined model reactors as well as more complex 'real world' systems, several groups at EAWAG are trying to unravel compound- and system-specific factors that control the reduction of a variety of anthropogenic chemicals under different conditions in the environment. The examples presented in this article include the reduction of nitroaromatic compounds under iron- and sulfate-reducing conditions, the reductive dehalogenation of chlorinated ethenes by cob(I)alamin and by a bacterium that uses such compounds as terminal electron acceptors, and the reduction of chromium(VI) by various reduced iron species. The link between microbial and abiotic (chemical) processes involved in reductive transformations of pollutants is emphasized. The major goal of this article is to illustrate the approaches taken to elucidate the mechanisms and kinetics of environmentally relevant reduction reactions of pollutants, and to discuss how the results of such studies can be used 1) to gain insight into what is actually happening in the environment, and 2) to develop methods for the treatment of chemical wastes or contaminated sites

    Experimental measurement of stress at a four-domain junction in lead zirconate titanate

    Get PDF
    A junction between two lamellar bands of ferroelectric domains in a lead zirconate titanate (PZT) ceramic is analysed using Kikuchi diffraction patterns in the transmission electron microscope. Indexing of the diffraction patterns allowed the determination of the 3D relative orientation of the 4 different domains at the junction and thus the characterisation of the domain boundaries. The local c/a ratio could also be determined from the misorientations at the domain boundaries. Analysis of the data showed that large stresses were concentrated at the junction, and that this is inevitable at such band junctions. Such stress concentrations could act as nuclei for cracking of the ceramic under additional loading in service, perhaps particularly as a consequence of extended electromechanical cycling. Moreover, the stresses would increase with increasing c/a making the issues all the more serious for Ti-rich compositions having larger c/a ratios

    Growth and texture of Spark Plasma Sintered Al2O3 ceramics: a combined analysis of X-rays and Electron Back Scatter Diffraction

    Full text link
    Textured alumina ceramics were obtained by Spark Plasma Sintering (SPS) of undoped commercial a-Al2O3 powders. Various parameters (density, grain growth, grain size distribution) of the alumina ceramics, sintered at two typical temperatures 1400{\deg}C and 1700{\deg}C, are investigated. Quantitative textural and structural analysis, carried out using a combination of Electron Back Scattering Diffraction (EBSD) and X-ray diffraction (XRD), are represented in the form of mapping, and pole figures. The mechanical properties of these textured alumina ceramics include high elastic modulus and hardness value with high anisotropic nature, opening the door for a large range of applicationsComment: 16 pages, 6 figures, submitted to J. Appl. Phy

    Classical double-layer atoms: artificial molecules

    Full text link
    The groundstate configuration and the eigenmodes of two parallel two-dimensional classical atoms are obtained as function of the inter-atomic distance (d). The classical particles are confined by identical harmonic wells and repel each other through a Coulomb potential. As function of d we find several structural transitions which are of first or second order. For first (second) order transitions the first (second) derivative of the energy with respect to d is discontinuous, the radial position of the particles changes discontinuously (continuously) and the frequency of the eigenmodes exhibit a jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
    corecore