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PHYSICAL REVIEW A, VOLUME 65, 022109
Concepts of radial and angular kinetic energies

Jens Peder Dahf* and Wolfgang P. Schlei¢h
Abteilung fu Quantenphysik, UniversitaUlm, D-89069 Ulm, Germany
2Chemical Physics, Department of Chemistry, Technical University of Denmark, DTU 207,
DK-2800 Lyngby, Denmark
(Received 30 August 2001; published 15 January 2002

We consider a general central-field systenbilimensions and show that the division of the kinetic energy
into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-
space picture. Thus, the radial and angular kinetic energies are different quantities in the two pictures, con-
taining different physical information, but the relation between them is well defined. We discuss this relation
and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom.

DOI: 10.1103/PhysRevA.65.022109 PACS nuntber03.65.Ge, 31.16:z, 42.25.Bs, 03.65.Sq

[. INTRODUCTION ues of operators. In the phase-space picture they are calcu-
lated by taking averages of dynamical phase-space functions
Phase-space representations of quantum mechanics plegth Wigner distribution functions. Performing the two cal-
an increasingly important role in several branches of physics;ulations with care will, of course, lead to the same result.
including quantum optics and atomic physics. The principalYet, a comparison between the detailed features of the two
reason for this is the conceptual possibility these representalescriptions leads to some interesting and physically impor-
tions give for viewing the position and momentum charac-tant observations.
teristics of a quantum state in the same picture. Phase space This was already noted in our previous work on the
is often useful for the description of Stationary states, and iWigner function for the ground state of the hydrogen atom
has become a natural background for describing theg] in which we touched on a pedagogical dilemma which,
quantum-mechanical time evolution of wave packets, fofor instance, has bothered writers of elementary textbooks
both matter waves and electromagnetic waves. Severﬁz]: How does one bring the fact that the angular momentum
i

phase-space representations have been discussed in the {ifzne Bohr orbit is nonzero into accordance with the fact that
erature, but one of them—the so-called WeyI-ngne%{;/

ati h o play th e of ~'the angular momentum in the Schioger picture is zero?
representation—nas come fo play the role of a canoniCqjy, yefarred to this dilemma as trngular-momentum di-

phase-space representation, becausg of its S"T‘Fﬂ‘h@ In lemmaand showed that it could be resolved by noting that
accordance with this, we shall exclusively consider the Weyl- -
Wigner representation in the following. the mapping of the operatdr* to phase space produces the
We consider this phase-space representation to be a rephase-space functionr xp|>~3#2/2 rather than just
resentation in its own right. In previous wof&-5], we have  |rxp|2.
justified this statement by analyzing and solving the phase- In the following, we generalize this result © dimen-
space differential equations that the Wigner functions mussions. In addition, we derive parallel but more faceted rela-
satisfy. In particular, we have stressed that the Wigner functions for kinetic-energy quantities, likewise Ihdimensions.
tions may be determined directly from these equations, withWe discuss these results and show that the separation of ki-
out reference to wave functions—although it is, in generalnetic energy into a radial and an angular part may be done in
easier to determine them from the wave functions. two physically meaningful ways. One is suggested by the
The fact that the phase-space description is a representtprm of the operators in the wave-function picture, the other
tion in its own right makes it relevant to apply physical in- by classical-like dynamical functions in the phase-space pic-
tuition to the form and behavior of the Wigner functions, justture. The relation between the two variants of radial and
as physical intuition may be applied to the form and behaviolangular kinetic energies is tied to the Weyl correspondence
of wave functions. When we do this, we discover that ourrule and is, therefore, well defined.
understanding of quantum states becomes enlarged, becauseWe illustrate the conceptual difference between the two
the two types of intuition may work differently and, there- types of kinetic-energy separation by two important ex-
fore, supplement each other. amples in three dimensions. One is the simplest possible
In the present investigation which, for the sake of genertime-dependent state of a free particle, the other is the sta-
ality, is carried out inD dimensions, we consider quantum tionary ground state of the hydrogen atom. For the first ex-
states referred to a centé We focus, in particular, on the ample, we find that the phase-space induced separation of the
evaluation of the angular momentum and the kinetic energkinetic energy into a radial and an angular part depends on
of such states. In the familiar picture based on wave functime in an intuitively simple way, whereas the operator-based
tions, these quantities are calculated as the expectation vaeparation is independent of time. For the ground state of the
hydrogen atom, the operator-based separation leads to an an-
gular kinetic energy of zero, whereas the phase-space in-
*Electronic address: jpd@kemi.dtu.dk duced separation classifies the whole kinetic energy as angu-
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lar kinetic energy. This striking difference between thedetermines the motion of the particle in a central fiéla).
results of the two types of separation is well reflected in the To introduce hyperspherical coordinates in position space,
form of the wave function vs the form of the Wigner func- one writesx;=r 7;, where thex;’s are D functions of D
tion. It illustrates in a perfect way how the physical richness— 1 angular coordinates. Both the angles andifi® may be
that is hidden in the simplest state of the simplest atom cashosen in different ways, but a choice similar to the follow-
only be seen by looking at the state from different angles. ling one is generally used, albeit with varying notation for the
also illustrates the intricate way in which the roots of classi-angles:

cal mechanics are buried in the quantum-mechanical soil.

The paper, which is intended to be reasonably self- X1=rSiNfp_1SiNfp_» - sind,sinby,
contained, is organized in the following way: In Sec. Il, we . i )
give a brief overview of hyperspherical co-ordinates and the Xo=ISINfp_1SINOp 5~ SINY, COSHy
central-field form of wave functions iB dimensions. In Sec. ) )
lll, we define the angular momentum and perform the X3=TrSINfp_1 SiNbp_5 -~ COSHy,

operator-based separation of the kinetic energy into a radial
and an angular part. We express the result both in terms of
general operators and in terms of differential operators. As a
background for the rest of the paper, we recall the salient
aspects of the Weyl-Wigner transformation in Sec. IV. In
Sec. V, we discuss the concept of angular momentum in the
phase-space picture. We introduce the concepts @uan-  with (0<r=w),(0<6,<27),(0<6,<m),...,(0<6p_;
tum) angular momentum and (classical-like angular mo- < 7). A similar representation may, of course, be set up for
mentum and discuss the relation between them. In Sec. Vthe Vectorp in momentum space.

we give a similar discussion of the kinetic energy in phase For the volume element in position space, we have the
space and of its separation into a radial part and an angul&xpression

part. Sections VIl and VIII are devoted to two illustrative

examples in three dimensions. Section IX generalizes the dr=dx,dx, --dxp=r° " 1drdQ, (6)
examples tdD dimensions. Section X is our conclusion.

XD_1=I‘ Sin 0D—l COSGD_Z,

Xp=Tr COSHp_1, (5

where the solid-angle elemedf) is given by

Il. HYPERSPHERICAL COORDINATES dQ=(sinfy_ )P 2(sindy_,)° 2 -~ sind,

_ Let r=(x1,?<2,...,>_<D) be_ the posi_tipn vector of a “par- Xdfp_q-d6,d6;. @
ticle” moving in D-dimensional position spad@], and let

pP=(P1,P2,.--,Pp) be its conjugate momentum. We take Integrating over all angles gives the total solid angle
and hence als@;, to be Cartesian coordinates. In accor-
dance with this, we introduce the hyper-radiugy the rela- 40—

tionr2=x2+x3--+x3, and likewisep, the magnitude of the F(D/2) ®
momentum, by the relatiop?=p3+ p5+- -+ p3. Quantum . .

mechanically, we adopt the position-space representation and Wave functions of the central-field problem are conve-
write niently referred to basis functions of the form

D/2

P(r)=R(r)Y(Q), (€)

where() is a collective notation for the angular coordinates
(01,0,,...,0p_1), andY(Q) is a hyperspherical harmonic.
The hyperspherical harmonics were introduced and exten-
sively studied by Greef9] and Hill [10]. They have also
=—#%#2V2  (2) been much studied by later authotSee, in particular, the
comprehensive presentations by Sommerfeld], Louck
[12], and Avery[13].) The hyperspherical harmonics are

eigenfunctions of the operatdr® that represents the square
of the total angular momentum and is defined below.

and

2 2 2
p2:_ﬁ2 _+(9_+...+_
ox;  ox5 x5

whereV? is theD-dimensional Laplacian. The kinetic energy
of a quantum-mechanical particle with madss represented
by the operator

A f)z 72 ) I1l. ANGULAR MOMENTUM AND KINETIC ENERGY
T=ou="5u" - ()
2M 2M The angular-momentum tensorindimensions is defined
by the operators
) Lijzxibj_xj@ii IQ&] (10)

H=om V() @ The square of the total angular momentum is

022109-2
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10D 1 r\[r L2
(2_— T=T T. = |p.-||l=-p|+—
L 22 Z (11) T Trad+Tang 2M (p I‘)(I’ p)+2|\/|l’2’ (20)
where the prime indicates that the double sum eXClUdeWhere'T'rad has the form
terms for whichi =j. The angular-momentum operators are
independent of. They merely depend upon the angular co- 3 o 1/ r\(r 21
ordinates. rad= o0 | P I\ 7P (22)

We shall now separate the kinetic-energy operatanto
two distinctive parts. To accomplish this in a manner thatlt represents the radial kinetic energ')éngwhlch represents
eases the subsequent transition to the phase-space repredée-angular kinetic energy, is given by the operator
tation, we begin by decomposing tBedimensional unit ma-

trix 1 as follows: . L2
Tang:—z- (22)
D D i 2Mr
I
BERESRCY Ti
=rta & 7 (12 A modified expression fol ,,4 may be obtained by intro-

- ducing theradial momentunt pby the definition
The matricesS andT" are defined by the relations

o X(r
S = XX (13 I0r=§<F'I0+ p- F) (23
and and realizing that
(Tij)k|:Xi25kj5ij+Xj25ki5|i—Xin(5ki5|j+5kj5n), o\ (r %2
p-—ll-P pr+—2(D 1)(D—3). (24)
i#j, (14
or This gives
X% X1Xp ot X1Xp T AZ oy #*(D—1)(D—-3) 25)
i 2 xx rad™ 2M 8Mr?
o 2721 2 22D (15) . . )
. . : To expressT,,q as a differential operator, we note from
XpX, XpXp - XzD Eq. (5) that the definition of hyperspherical coordinates im-
plies that
and, for instance, D D
2x(9_2xi¢~7_rv ”
X5 —XXp 0 - 0 S ax, SLroax r (26)
2
— XoXq X3 o - 0 . . . .
1 Using this, and the commutation relations between the com-
T= 0 0 0 - 0]. (16)  ponents of andp, turns the expressio21) into the follow-
e ing forms:
0 0 0 -0 . S hz(az D-1 a)
d= " 5\ D1 5 T T oM | a2 ar |-
Adopting a dyadic notation, we may then write TV o 2M r ‘”(27)
1 (s 12 2 T
?:mp = 52 E ) (17)  These are familiar expressions.
IV. THE WEYL-WIGNER TRANSFORMATION
Next, we note that
s Let #(r) be a normalized position-space wave function
r\/r
P'r—z‘p=(p'F)<F'p) (18
j () g(rydr=1. (28
and
' (2 Further, letA be some operator acting @h The expectation
L value ofA in the statey is then
p-zP="77 (19 &
N .
Hence, the kinetic-energy operator may be written as <A>—f Y*(r)Ag(r)dr. (29

022109-3
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V. ANGULAR MOMENTUM IN THE PHASE-SPACE

WhenA is Hermitian,(A) is real.
PICTURE

Another way to evaluate the expectation val@é) is by
introducing the 2D-dimensional (p) phase space, and then

use the expression We denote the Weyl transform of the operatgrby A;; .

It is simply given by

<A>=f f a(r,p)W(r,p)drdp. (30 Ajj=Xip;—X;p; . (37)

In analogy with Eq(11), we introduce the dynamical phase-

Here, W(r,p) is the Wigner function corresponding to the space function

wave function(r), and a(r,p) is the dynamical phase-
space function corresponding to the operakorFor a Her- 1 D )

mitian operator(r,p) is real. The Wigner functio®V(r,p) AZZEZ Z' Ajj. (39)
is always real, but may take negative values. Its integral over ==t

hase space is, however, always equal to 1, . L A
P P ys €q This function is, however, not the Weyl transformlof.

To determine the actual Weyl transform bf, we first

determine the Weyl transform of the operalf.(ﬁjr. We do this

i i . by invoking the relation{36), with a andb both equal to\ ; .
It has the particle density(r) and the momentum density (s found that only the three first terms in the expansion of

W(r,p)drdp=1. (31
J1

I1(p) as marginal densities: the exponential operator contribute to the result. The Weyl
transform ofL7 is thus found to be\7 —3#2. We express
P(r)=J W(r,p)dp, (328  the result as the mapping
(22— Lp2 (39
H(p)=f W(r,p)dr. (32b ij ij 5
The Wigner function is defined as folloW&4,16—18,1,k From this, we get for the square of the total angular momen-
tum:
1 D
Wi _ *(r—r'[2 ) —ip-r'/h r R D(D—1
(r,p) (—2ML> Jw (r=r'12)y(r+r'12)e dr (2 A7 ( )ﬁz. (40
(33) 4

This is the generalization of the result for=3 that we gave
in the Introduction.

Hence we have, for a state described by the wave function
Y(r) and the Wigner functioW(r,p), that

If the operatorA is of the formF(f)+G(p), thena(r,p)
will be simply F(r) + G(p). Otherwise, the noncommutativ-
ity betweenf andp will come into play. The transformation
involved is the Weyl transformatiof15-18,1,%. It may, for
instance, be represented in the following form

<£2>=J (N L2y(radr
a(r,p)=f (r+r'12|Ajr—r'12)e” P hgr (34

=IJA2W(r,p)drdp—wﬁ2. (41)

in which the matrix element oh is defined with respect to
two eigenstates of the position-vector operator, correspond- 1t this and the other relations above into perspective,
ing to the eigenvalues+r'/2 andr —r'/2, respectively. let us distinguish between two equally well-defined angular
Let C=AB. The dynamical phase-space function corre-momenta. One of these goes naturally with the wave-
sponding to the operatd is then given by the star product function description. The other goes naturally with the
phase-space description. The first angular momentum, which
c(r,p)=a(r,p)*b(r,p), (35  we shall call theg (quantum angular momentum, is defined

by the operatord;; andL2. The other angular momentum,
we shall call thec (classical-like angular momentum. It is
defined by the dynamical phase-space functL@nsandAz.
a(r,p)b(r,p). The two angular momenta are connected by relations like
that of Eq.(40), but the kinds of intuition one may attach to
(36) I
them are quite different.
Here, the subscript 1 on a differential operator indicates that Thus, theq angular momentum is primarily an algebraic,
this operator acts only on the first function in the productor group-theoretical concept. THg; operators are genera-
a(r,p)b(r,p). Similarly, the subscript 2 is used with opera- tors of infinitesimal rotations, and their eigenvalues describe
tors that only act on the second function in the product.  the possible behavior of a given state under rotations. A

as defined by the prescription

dary dpp dpp drp

022109-4
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state in a three-dimensional world, with its zero eigenvaluelThe validity of the last expression is simplest verified by
of L2, is for instance invariant under a rotation about anynoting thatp?— (p cosu)?=(psinu)®.

axis through the origin. This is what the eigenvalueldf It is important to note thal,q is not the Weyl transform
tells us. The position-space wave functigfr) is indepen-  Of Tyaq, NOT is Tgng the Weyl transform Off 4ng. To determine

dent of angles, and hence it predicts all directions td be  the actual Weyl transforms &f. g andTang requires repeated
equally probable. If we prefer to describe the state by itsapplications of the relatiof36) to the expression&1) and

momentum-space wave function (22). We find, after some tedious algebra:
32 L (D121
— —ip-rih - -

then this wave function is independent of angles about the d
origin of momentum space. Hence, all directionspofire an

also equally probable. But one cannot talk about a coupling (D—1)(D—2)#?2

between the directions afandp in this description. T TC (49)
The expression for the angular momentum is, on the ang 8Mr?

other hand, just the classical angular-momentum expression

for particle motion relative to the cent€. Thus, it provides The relation (48) between the radial kinetic energies

a measure of the relative directioniofindp with respectto  might also have been obtained from the relati@f) by ex-
O. This directional correlation, which is not directly apparentploiting the following interesting relations:
from the wave function, is manifestly present in the Wigner

function. It leads to a nonzemangular momentum even if . rp

the g angular momentum vanishes. This is in complete ac- pr'—>T
cordance with the general relatighl).

(50

and
VI. KINETIC ENERGY IN THE PHASE-SPACE PICTURE

r-p)2+ (D—1)A? 51)

The Weyl transform of the Kkinetic-energy operatiir erz'—> - —_
given by the expressio(8), is simply ar

p2
C:_
To=ou- (43

wherep, is the operator defined by E(3). These relations
may again be derived by repeated application of the expres-
sion (36) for the star product.

To separate it into a classical-like radial paff,,, and a We shall now apply the results of this and the previous
classical-like angular parfg,,, we note that the resolution Section to two important examples.

of the identity matrix given by Eq(12) also holds in phase

space. Hence, we may also write VII. A FREE-PARTICLE STATE
1 12 D i In this section we consider a minimum-uncertainty state
TC= v P EZ Z : (44)  in three dimensions. The wave function for such a state is
312
But now the components @f commute with the components 0= a —1/2a2r2 52
of r, and the analogue of ER0) becomes Y(r,0)= \/_; € ' (52)
1 r A?
TC Trad+T§ng (p +— (45) at a chosen initial time=0. The corresponding Wigner
FIVANE 2Mr function has the form

with A2 given by Eq.(38). The phase-space version of the

radial kinetic energy is consequently (r,p.0)= (Wz)aeazrzpzmzhz. 53
. 1 (pr|? (pcosu)?
d oM\ r ) T 2M (46 Let us write down the Wigner function at a later tirhe

o . _ under the assumption that we are dealing with a free particle.
The last expression is obtained by puttingp=rp cosu,  We then know that the Wigner function will evolve in time in
whereu is the angle between and p. The angular kinetic exactly the same way as a classical phase-space distribution,

energy is that is, it will develop according to the classical Liouville
5 5 equation[18,1,5. Thus, the expression faW(r,p,t) may be
T AT (P 5'”U) (47 obtained from that foW(r,p,0) by simply replacing by r
ang™ o\ 12 2M —tp/M. In this way we get

022109-5
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1 2.2 2 27, 232 1 2
W(r,p,t)=mexp[—a re—[(t/m)°+1]p“/ah Tradzm (p cosu)“W(r,p)drdp, (59
+2(t/7)r-plh}, (54  and
where 1 o
y Tcmg:mf f (psinu)“W(r,p)drdp. (60)
=% (59 \We have, of course, that

Sincer - p=rp cosu, whereu is the angle between the vec- 7=(T). (61)
torsr andp, the Wigner function’54) only depends on the ) )

three coordinates p, andu. It is independent of the three ~ Rather than evaluating the expressi@f8) and (60) by
Euler angles that determine the orientation of thg) cross direct integration, we may proceed in the following analyti-
in phase space. This independence of the Euler angles e%al way. According to Eqs(48) and (49), with D=3, Trq
presses the overall rotational invariance of the state, that is, &d T, are the Weyl transforms of the operators

signifies that theg angular momentum is zero at all times.

However, evaluating the average &f with the Wigner FrooF h? (62)
functions(53) and(54) gives 3%2, as it should according to rad ™ Trad - N2
the relation(41).
We note that all angles betweerandp are equally prob- and
able att=0, whereas small values aofare favored for large 52
values oft. Thus, the correlation betweerandp depends on T g Tangt VL (63)

t. Such a statement would be impossible to defend in the

wave-function picture. However, in the phase-space picture it ) . .
is very meaningful. For at=0, the Wigner functior(54) is respectively. Hence, we merely have to modify the values in

: . oty
concentrated about the origin of phase space. But in thEd- (57) With the expectation value of*/4Mr* to get the
course of time, phase-space points with nonzero valugs of vazllues ngfad and Ty Evaluating this value by averaging
will move to points with larger values af, with r andp 7 /4Mr® with the Wigner function(54) gives

becoming more and more parallel. But this just amounts to 52 k2 1
small values ofi being favored for large values tfas in the < 2> = . (64)
expressior(54). 4Mr 2M (t/m)°+1

This behavior is also reflected in the expectation values oh
the radial and angular parts of the kinetic energy as a func- ence, we get
tion of time, but only in the phase-space picture. It is readily o2h2 (3 1
verified that the total kinetic energy associated with the wave Trad= (__ 5 ,
function (52) has the value M 14 2[(t/7)°+1]

. 3a%h? o’h? 1

Thus, the classical-like kinetic energy is purely radial for
very large values of. However, at=0 only one third of the
kinetic energy is radial, corresponding to the value
(1/4)(*h%/IM). The angular kinetic energy is twice as large.
3 o242 This reflects the fact thatandp are entirely uncorrelated at

It is, of course, independent fAnd sinceys(r,t) represents

an s state, the expectation value of tﬁ'(gng of Eq. (22) is
zero at all times. Thus we have

<Arad>: — , t=0, so thatp is twice as likely to be perpendicular toas
4 M being parallel tar .
R The energiesl, 7,4, and 7,4 are shown graphically in
(Tang =0, (57 Fig. 1, as functions of.
for all t. . _ ViIl. THE HYDROGEN ATOM
In the phase-space picture, we must average the dynami-
cal phase-space functiofi, Tf, and TS, with the phase- Having studied a free-particle case, we shall next consider
space functior(54). We denote the resulting energies By @ bound-state case, namely, the ground state of the three-
Traa @nd Tong, TESPECively: dimensional hydrogen atom. The wave function is now
1 1 1/2
= 2 )= —g) e, (66)
7o | [ pwirparp, 59 —
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1.00 We shall now see that this pronounced correlation be-
tween the directions of andp is strongly reflected in the
1 partitioning of the kinetic energy. The kinetic energy associ-
075 T ated with the wave functiof66) has the value
' eI hZ
1 g Ty=-——, 68
/’ Trad < > 2M aq (68)
W ’
= 030~ // and since/(r) represents agstate we have, in analogy with
1 N the expressionés7):
7N\
L,/ . hZ
025 + \ (Frad==——
ra 1
N Tang 2M ao
T ~
ST = — <:|\—ang>:0- (69
0.00 T I T I T I T I 1 I
0 1 2 3 4 5 The relationg62) and(63) still hold, and it is readily found
t/'t that
FIG. 1. Time dependence of the classical-like kinetic energy of h? h?
a free particle described by the Wigner functi@d). t is measured AMr2/ ~ 2Ma2 (70)
in units of 7= M/ «?%, energies in units of= «?4%/M. The kinetic 0
energy7 is separated into its radial paff,y and its angular part The analogue of Eq(65) becomes therefore
Tang: ’
Trad=0,
wherea, is the Bohr radius,
hZ
Tan= =2 - 71
h? 4me, 6 a9 2Mag (71
= T2 (67)

This is a remarkable result. For it shows that, in the
phase-space representation, the radial kinetic energy van-
M is the electron mas@ve treat the nucleus as being infi- jshes. The kinetic energy is purely angular. This is, of course,
nitely heavy, and e is the magnitude of the elementary in complete harmony with a picture in which the electron
charge. The state considered is a stationary state, and thgimarily revolves around the nucleus rather than moving in
Wigner function is accordingly independent of time. As in the radial direction.
the previous example, we are dealing withsastate, so the The cases studied in this section and the previous one
Wigner function is again independent of the Euler angles thagaye both been fas states. The expressions, we have derived

determine the orientation of the,p) cross, but it does de-
pend on the angle betweenr andp, and in fact in a more
complicated manner than in the express(ib4). In addition,

in the first six sections are, however, valid for any state in-
dependent of its angular momentum, but the interesting ef-
fects are most pronounced for tigestates. With a minor

the Wigner function for the hydrogen atom takes both posiexception, the derived expressions are also valid for any di-

tive and negative values, whereas the Wigner fundfiah is
non-negative at all times.

mensionD. A few comments concerning dimensions differ-
ent from three are, therefore, in order.

We have made a detailed study of the Wigner function for

the hydrogen atom in Ref6]. Our results wereinter alia,
presented as a series of contour maps for diffevevdlues.

IX. ARBITRARY DIMENSIONS

These maps showed that the Wigner function is everywhere The minor exception mentioned above has to do with
positive in what we called the dominant subspace, that is, theero-angular-momentum states for=2. The relationg48)

part of phase space in whighand p are perpendiculary

and(49) suggest that the separation of the kinetic energy into

=/2). Itis, in particular, large in the part of this subspacea radial part and an angular part is invariant under the Weyl

obtained by putting =a, andp=7/a,. This is the region of

transformation forD=2. This is, however, not quite true.

phase space to which the ground-state motion was restrictédne must be aware that taking expectation values with the

in early quantum mechani¢49], since a Bohr orbitin po-
sition spacg is just a circle with radiusg, in which the

expression$48) and(49) involves taking expectation values
of 1/r2, and such expectation values are undefined for wave

electron is supposed to move with the constant momenturfunctions that stay finite at=0 in a two-dimensional world.

hlay. For other angles than=7/2, the Wigner function

This is because the volume elemédit only containg to the

develops negative regions. It is, in particular, strongly oscil-first power forD=2. Hence, one cannot exploit operator
lating around the value zero for small angles and angles apelations such as those of Eq&62) and (63) for zero-

proachingar.

angular-momentum states. This, however, does not reduce
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the significance of the dynamical phase-space funcfigns

and Tgng. It just implies that the radial and angular kinetic
energies’,q and 7,4 associated with them must be evalu-
ated directly by averaging with the Wigner function, using
the two-dimensional version of the expressia®®) and

(60). For the two-dimensional equivalent of the Wigner func-
tion (54) this produces adependence of the kinetic energies
similar to that in Fig. 1, with the difference that the kinetic

energy is equally distributed on its radial and angular com-

ponents att=0. This difference was to be expected since
there is only one perpendicular direction to in two
dimensions.

Concerning the hydrogen atom, it is interesting to note
that the above conclusions for the ground state of the hydro-
gen atom in three dimensions remain valid for other values

of D. Thus, the kinetic energy is purely radial in the wave-

function picture, but purely angular in the phase-space pic-

ture. The ground-state wave function for tBedimensional
hydrogen atom has the general form

1 1/2

I —ringag
Y=\ 5 Ding2Zo izngt) & o (72
whereS; is the total solid angl€8) and
D—-1
No= 5 - (73)
The ground-state kinetic energy is
. h?

and forD >3 exactly the same value is found for the expec
tation value of theD dependent term in Eq$48) and (49).
This confirms that the classical-like kinetic energy is, in fact,
purely angular foD > 3.

For D=2, we can again not draw on expressions like
those of Eqs.(62) and (63). We must perform the phase-
space integrations directly. Doing so shows that alsoCfor
=2, the classical-like kinetic energy is purely angular.

The said integrations over phase space are far from simple
to perform, because the Wigner function for the hydrogen

atom cannot be evaluated analyticdiy20]. A practical pro-
cedure is to expand thesiwave function on a set of Gaus-
sians. For a linear combination &f Gaussians, the Wigner
function may be determined analytically. The valuesZgf
and7,,qymay then be calculated by combining analytical and
numerical integrations. Fod= 1, we have a Wigner function
similar to that of Eq.(53) for a free particle, but in two
dimensions only, leading t@,q=Zang- As N increases, the
contribution from7,,4 is found to decrease, converging to
zero for large values of. This is shown graphically in
Fig. 2.

The information in Fig. 2 is not merely numerical. It
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FIG. 2. With the ground-state wave function of the two-
dimensional hydrogen atom approximated by a linear combination
of N Gaussians, the figure shows tRelependence of the calculated
classical-like kinetic energy, as well as its radial and angular
parts, 7,¢ and 7,,q. Energies are measured in units ef
=h?/Ma3.

tions for a different potential. A8l increases, this potential
becomes more and more Coulomb like. This suggests that
only for the Coulomb potential is the classical-like kinetic
energy purely angular.

The linear combinations of Gaussians used to prepare Fig.
2 were determined by the variational principle, following the
prescription given in Ref{20]. In that work, we made ex-
plicit studies of the Wigner function for thB dimensional
hydrogen atom and presented contour curves for selected
values ofD. These contour maps showmter alia, that the
oscillations between negative and positive values of the
Wigner function become weaker and weaker for higBer
values. We may, therefore, say that the phase-space distribu-
tions become more classical as the dimensionality
increases.

X. DISCUSSION

The problem of separating the kinetic energy of a particle
moving in a central field into a radial part and an angular part
has not attracted much attention in the past. It has been tac-
itly assumed that the separation offered by the wave-function
picture was the only sensible one. In the present paper, we
have challenged this view by putting focus upon the separa-
tion offered by the phase-space picture. This separation is
equally well defined. In contrast to the former, it throws
much light on the correlation between the directions of the
position vectorr and the momentum vectqr. There is no
way of discussing this correlation in the wave-function
picture.

serves as yet another demonstration of the physical unique- The most amazing result of our analysis is probably our
ness of the Coulomb potential. For instead of considering théinding that the kinetic energy in the ground state of the
used wave functions to be approximate solutions for thenydrogen atom is purely radial in the wave-function picture,

Coulomb potential, we may consider them to be exact solu

and purely angular in the phase-space picture. This finding,
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which relates to arbitrary dimensions, reflects the great difagain that the phase-space picture is a fruitful supplement to

ference in the kind of intuition one may apply within the two the wave-function picture.

pictures. This difference is also well illustrated by focusing

upon the angular momentum. In the wave-function picture, ACKNOWLEDGMENTS
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