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Concepts of radial and angular kinetic energies
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We consider a general central-field system inD dimensions and show that the division of the kinetic energy
into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-
space picture. Thus, the radial and angular kinetic energies are different quantities in the two pictures, con-
taining different physical information, but the relation between them is well defined. We discuss this relation
and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom.
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I. INTRODUCTION

Phase-space representations of quantum mechanics play
an increasingly important role in several branches of physics,
including quantum optics and atomic physics. The principal
reason for this is the conceptual possibility these representa-
tions give for viewing the position and momentum charac-
teristics of a quantum state in the same picture. Phase space
is often useful for the description of stationary states, and it
has become a natural background for describing the
quantum-mechanical time evolution of wave packets, for
both matter waves and electromagnetic waves. Several
phase-space representations have been discussed in the lit-
erature, but one of them—the so-called Weyl-Wigner
representation—has come to play the role of a canonical
phase-space representation, because of its simplicity@1,2#. In
accordance with this, we shall exclusively consider the Weyl-
Wigner representation in the following.

We consider this phase-space representation to be a rep-
resentation in its own right. In previous work@3–5#, we have
justified this statement by analyzing and solving the phase-
space differential equations that the Wigner functions must
satisfy. In particular, we have stressed that the Wigner func-
tions may be determined directly from these equations, with-
out reference to wave functions—although it is, in general,
easier to determine them from the wave functions.

The fact that the phase-space description is a representa-
tion in its own right makes it relevant to apply physical in-
tuition to the form and behavior of the Wigner functions, just
as physical intuition may be applied to the form and behavior
of wave functions. When we do this, we discover that our
understanding of quantum states becomes enlarged, because
the two types of intuition may work differently and, there-
fore, supplement each other.

In the present investigation which, for the sake of gener-
ality, is carried out inD dimensions, we consider quantum
states referred to a centerO. We focus, in particular, on the
evaluation of the angular momentum and the kinetic energy
of such states. In the familiar picture based on wave func-
tions, these quantities are calculated as the expectation val-

ues of operators. In the phase-space picture they are calcu-
lated by taking averages of dynamical phase-space functions
with Wigner distribution functions. Performing the two cal-
culations with care will, of course, lead to the same result.
Yet, a comparison between the detailed features of the two
descriptions leads to some interesting and physically impor-
tant observations.

This was already noted in our previous work on the
Wigner function for the ground state of the hydrogen atom
@6#, in which we touched on a pedagogical dilemma which,
for instance, has bothered writers of elementary textbooks
@7#: How does one bring the fact that the angular momentum
in the Bohr orbit is nonzero into accordance with the fact that
the angular momentum in the Schro¨dinger picture is zero?
We referred to this dilemma as theangular-momentum di-
lemmaand showed that it could be resolved by noting that

the mapping of the operatorL̂2 to phase space produces the
phase-space functionur3pu223\2/2 rather than just
ur3pu2.

In the following, we generalize this result toD dimen-
sions. In addition, we derive parallel but more faceted rela-
tions for kinetic-energy quantities, likewise inD dimensions.
We discuss these results and show that the separation of ki-
netic energy into a radial and an angular part may be done in
two physically meaningful ways. One is suggested by the
form of the operators in the wave-function picture, the other
by classical-like dynamical functions in the phase-space pic-
ture. The relation between the two variants of radial and
angular kinetic energies is tied to the Weyl correspondence
rule and is, therefore, well defined.

We illustrate the conceptual difference between the two
types of kinetic-energy separation by two important ex-
amples in three dimensions. One is the simplest possible
time-dependent state of a free particle, the other is the sta-
tionary ground state of the hydrogen atom. For the first ex-
ample, we find that the phase-space induced separation of the
kinetic energy into a radial and an angular part depends on
time in an intuitively simple way, whereas the operator-based
separation is independent of time. For the ground state of the
hydrogen atom, the operator-based separation leads to an an-
gular kinetic energy of zero, whereas the phase-space in-
duced separation classifies the whole kinetic energy as angu-*Electronic address: jpd@kemi.dtu.dk

PHYSICAL REVIEW A, VOLUME 65, 022109

1050-2947/2002/65~2!/022109~9!/$20.00 ©2002 The American Physical Society65 022109-1



lar kinetic energy. This striking difference between the
results of the two types of separation is well reflected in the
form of the wave function vs the form of the Wigner func-
tion. It illustrates in a perfect way how the physical richness
that is hidden in the simplest state of the simplest atom can
only be seen by looking at the state from different angles. It
also illustrates the intricate way in which the roots of classi-
cal mechanics are buried in the quantum-mechanical soil.

The paper, which is intended to be reasonably self-
contained, is organized in the following way: In Sec. II, we
give a brief overview of hyperspherical co-ordinates and the
central-field form of wave functions inD dimensions. In Sec.
III, we define the angular momentum and perform the
operator-based separation of the kinetic energy into a radial
and an angular part. We express the result both in terms of
general operators and in terms of differential operators. As a
background for the rest of the paper, we recall the salient
aspects of the Weyl-Wigner transformation in Sec. IV. In
Sec. V, we discuss the concept of angular momentum in the
phase-space picture. We introduce the concepts ofq ~quan-
tum! angular momentum andc ~classical-like! angular mo-
mentum and discuss the relation between them. In Sec. VI,
we give a similar discussion of the kinetic energy in phase
space and of its separation into a radial part and an angular
part. Sections VII and VIII are devoted to two illustrative
examples in three dimensions. Section IX generalizes the
examples toD dimensions. Section X is our conclusion.

II. HYPERSPHERICAL COORDINATES

Let r5(x1 ,x2 ,...,xD) be the position vector of a ‘‘par-
ticle’’ moving in D-dimensional position space@8#, and let
p5(p1 ,p2 ,...,pD) be its conjugate momentum. We takexi ,
and hence alsopi , to be Cartesian coordinates. In accor-
dance with this, we introduce the hyper-radiusr by the rela-
tion r 25x1

21x2
2
¯1xD

2 , and likewisep, the magnitude of the
momentum, by the relationp25p1

21p2
21¯1pD

2 . Quantum
mechanically, we adopt the position-space representation and
write

p̂5~ p̂1 ,p̂2 ,...,p̂D!52 i\S ]

]x1
,

]

]x2
,...,

]

]xD
D , ~1!

and

p̂252\2S ]2

]x1
2 1

]2

]x2
2 1¯1

]2

]xD
2 D 52\2¹2, ~2!

where¹2 is theD-dimensional Laplacian. The kinetic energy
of a quantum-mechanical particle with massM is represented
by the operator

T̂5
p̂2

2M
52

\2

2M
¹2. ~3!

The central-field Hamiltonian

Ĥ5
p̂2

2M
1V~r ! ~4!

determines the motion of the particle in a central fieldV(r ).
To introduce hyperspherical coordinates in position space,

one writesxi5rh i , where theh i ’s are D functions of D
21 angular coordinates. Both the angles and theh i ’s may be
chosen in different ways, but a choice similar to the follow-
ing one is generally used, albeit with varying notation for the
angles:

x15r sinuD21 sinuD22¯ sinu2 sinu1 ,

x25r sinuD21 sinuD22¯ sinu2 cosu1 ,

x35r sinuD21 sinuD22¯ cosu2 ,

]

xD215r sinuD21 cosuD22 ,

xD5r cosuD21 , ~5!

with (0<r<`),(0<u1,2p),(0<u2,p),...,(0<uD21
,p). A similar representation may, of course, be set up for
the vectorp in momentum space.

For the volume element in position space, we have the
expression

dr5dx1dx2¯dxD5r D21drdV, ~6!

where the solid-angle elementdV is given by

dV5~sinuD21!D22~sinuD22!D23
¯ sinu2

3duD21¯du2du1 . ~7!

Integrating over all angles gives the total solid angle

SD5E dV5
2pD/2

G~D/2!
. ~8!

Wave functions of the central-field problem are conve-
niently referred to basis functions of the form

c~r !5R~r !Y~V!, ~9!

whereV is a collective notation for the angular coordinates
(u1 ,u2 ,...,uD21), andY(V) is a hyperspherical harmonic.
The hyperspherical harmonics were introduced and exten-
sively studied by Green@9# and Hill @10#. They have also
been much studied by later authors.~See, in particular, the
comprehensive presentations by Sommerfeld@11#, Louck
@12#, and Avery @13#.! The hyperspherical harmonics are
eigenfunctions of the operatorL̂2 that represents the square
of the total angular momentum and is defined below.

III. ANGULAR MOMENTUM AND KINETIC ENERGY

The angular-momentum tensor inD dimensions is defined
by the operators

L̂ i j 5xi p̂j2xj p̂i , iÞ j . ~10!

The square of the total angular momentum is
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L̂25
1

2 (
i 51

D

(
j 51

D

8L̂ i j
2 , ~11!

where the prime indicates that the double sum excludes
terms for whichi 5 j . The angular-momentum operators are
independent ofr. They merely depend upon the angular co-
ordinates.

We shall now separate the kinetic-energy operatorT̂ into
two distinctive parts. To accomplish this in a manner that
eases the subsequent transition to the phase-space represen-
tation, we begin by decomposing theD-dimensional unit ma-
trix 1 as follows:

15
S

r 2 1
1

2 (
i 51

D

( 8
j 51

D T i j

r 2 . ~12!

The matricesS andT i j are defined by the relations

Skl5xkxl ~13!

and

~T i j !kl5xi
2dk jd i j 1xj

2dkid l i 2xixj~dkid l j 1dk jd l i !,

iÞ j , ~14!

or

S5S x1
2 x1x2 ¯ x1xD

x2x1 x2
2

¯ x2xD

• • ¯ •

xDx1 xDx2 ¯ xD
2

D ~15!

and, for instance,

T125S x2
2 2x1x2 0 ¯ 0

2x2x1 x1
2 0 ¯ 0

0 0 0 ¯ 0

• • • ¯ •

0 0 0 ¯ 0

D . ~16!

Adopting a dyadic notation, we may then write

T̂5
1

2M
p̂•S S

r 2 1
1

2 (
i 51

D

( 8
j 51

D T i j

r 2 D •p̂. ~17!

Next, we note that

p̂•
S

r 2 •p̂5S p̂•
r

r D S r

r
•p̂D ~18!

and

p̂ •

T i j

r 2 •p̂5
L̂ i j

2

r 2 . ~19!

Hence, the kinetic-energy operator may be written as

T̂5T̂rad1T̂ang5
1

2M S ṗ•
r

r D S r

r
•p̂D1

L̂2

2Mr 2 , ~20!

whereT̂rad has the form

T̂rad5
1

2M S p̂•
r

r D S r

r
•p̂D . ~21!

It represents the radial kinetic energy.T̂ang which represents
the angular kinetic energy, is given by the operator

T̂ang5
L̂2

2Mr 2 . ~22!

A modified expression forT̂rad may be obtained by intro-
ducing theradial momentum pˆ r by the definition

p̂r5
1

2 S r

r
•p̂1p̂•

r

r D ~23!

and realizing that

S p̂•
r

r D S r

r
•p̂D5 p̂r

21
\2

4r 2 ~D21!~D23!. ~24!

This gives

T̂rad5
p̂r

2

2M
1

\2~D21!~D23!

8Mr 2 . ~25!

To expressT̂rad as a differential operator, we note from
Eq. ~5! that the definition of hyperspherical coordinates im-
plies that

]

]r
5(

i 51

D
]xi

]r

]

]xi
5(

i 51

D
xi

r

]

]xi
5

r

r
•“. ~26!

Using this, and the commutation relations between the com-
ponents ofr andp̂, turns the expression~21! into the follow-
ing forms:

T̂rad52
\2

2M

1

r D21

]

]r
r D21

]

]r
52

\2

2M S ]2

]r 2 1
D21

r

]

]r D .

~27!

These are familiar expressions.

IV. THE WEYL-WIGNER TRANSFORMATION

Let c(r ) be a normalized position-space wave function

E c* ~r !c~r !dr51. ~28!

Further, letÂ be some operator acting onc. The expectation
value of Â in the statec is then

^Â&5E c* ~r !Âc~r !dr . ~29!

CONCEPTS OF RADIAL AND ANGULAR KINETIC ENERGIES PHYSICAL REVIEW A65 022109

022109-3



When Â is Hermitian,^Â& is real.
Another way to evaluate the expectation value~29! is by

introducing the 2D-dimensional (r ,p) phase space, and then
use the expression

^Â&5E E a~r ,p!W~r ,p!drdp. ~30!

Here, W(r ,p) is the Wigner function corresponding to the
wave functionc(r ), and a(r ,p) is the dynamical phase-
space function corresponding to the operatorÂ. For a Her-
mitian operatora(r ,p) is real. The Wigner functionW(r ,p)
is always real, but may take negative values. Its integral over
phase space is, however, always equal to 1,

E E W~r ,p!drdp51. ~31!

It has the particle densityr(r ) and the momentum density
P(p) as marginal densities:

r~r !5E W~r ,p!dp, ~32a!

P~p!5E W~r ,p!dr . ~32b!

The Wigner function is defined as follows@14,16–18,1,5#:

W~r ,p!5S 1

2p\ D DE c* ~r2r 8/2!c~r1r 8/2!e2 ip•r8/hdr 8.

~33!

If the operatorÂ is of the formF( r̂ )1G(p̂), then a(r ,p)
will be simply F(r )1G(p). Otherwise, the noncommutativ-
ity betweenr̂ and p̂ will come into play. The transformation
involved is the Weyl transformation@15–18,1,5#. It may, for
instance, be represented in the following form

a~r ,p!5E ^r1r 8/2uÂur2r 8/2&e2 ip•r8/\dr 8, ~34!

in which the matrix element ofÂ is defined with respect to
two eigenstates of the position-vector operator, correspond-
ing to the eigenvaluesr1r 8/2 andr2r 8/2, respectively.

Let Ĉ5ÂB̂. The dynamical phase-space function corre-
sponding to the operatorĈ is then given by the star product

c~r ,p!5a~r ,p!* b~r ,p!, ~35!

as defined by the prescription

c~r ,p!5expF i\

2 S ]

]r1
•

]

]p2
2

]

]p1
•

]

]r2
D Ga~r ,p!b~r ,p!.

~36!

Here, the subscript 1 on a differential operator indicates that
this operator acts only on the first function in the product
a(r ,p)b(r ,p). Similarly, the subscript 2 is used with opera-
tors that only act on the second function in the product.

V. ANGULAR MOMENTUM IN THE PHASE-SPACE
PICTURE

We denote the Weyl transform of the operatorL̂ i j by L i j .
It is simply given by

L i j 5xipj2xj pi . ~37!

In analogy with Eq.~11!, we introduce the dynamical phase-
space function

L25
1

2 (
i 51

D

( 8
j 51

D

L i j
2 . ~38!

This function is, however, not the Weyl transform ofL̂2.
To determine the actual Weyl transform ofL̂2, we first

determine the Weyl transform of the operatorL̂ i j
2 . We do this

by invoking the relation~36!, with a andb both equal toL i j .
It is found that only the three first terms in the expansion of
the exponential operator contribute to the result. The Weyl
transform ofL̂ i j

2 is thus found to beL i j
2 2 1

2 \2. We express
the result as the mapping

L̂ i j
2 °L i j

2 2
1

2
\2. ~39!

From this, we get for the square of the total angular momen-
tum:

L̂2°L22
D~D21!

4
\2. ~40!

This is the generalization of the result forD53 that we gave
in the Introduction.

Hence we have, for a state described by the wave function
c(r ) and the Wigner functionW(r ,p), that

^L̂2&5E c* ~r !L̂2c~r !dr

5E E L2W~r ,p!drdp2
D~D21!

4
\2. ~41!

To put this and the other relations above into perspective,
let us distinguish between two equally well-defined angular
momenta. One of these goes naturally with the wave-
function description. The other goes naturally with the
phase-space description. The first angular momentum, which
we shall call theq ~quantum! angular momentum, is defined
by the operatorsL̂ i j and L̂2. The other angular momentum,
we shall call thec ~classical-like! angular momentum. It is
defined by the dynamical phase-space functionsL i j andL2.
The two angular momenta are connected by relations like
that of Eq.~40!, but the kinds of intuition one may attach to
them are quite different.

Thus, theq angular momentum is primarily an algebraic,
or group-theoretical concept. TheL̂ i j operators are genera-
tors of infinitesimal rotations, and their eigenvalues describe
the possible behavior of a given state under rotations. As
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state in a three-dimensional world, with its zero eigenvalue
of L̂2, is for instance invariant under a rotation about any
axis through the origin. This is what the eigenvalue ofL̂2

tells us. The position-space wave functionc(r ) is indepen-
dent of angles, and hence it predicts all directions ofr to be
equally probable. If we prefer to describe the state by its
momentum-space wave function

f~p!5S 1

2p\ D 3/2E c~r !e2 ip•r /\dr , ~42!

then this wave function is independent of angles about the
origin of momentum space. Hence, all directions ofp are
also equally probable. But one cannot talk about a coupling
between the directions ofr andp in this description.

The expression for thec angular momentum is, on the
other hand, just the classical angular-momentum expression
for particle motion relative to the centerO. Thus, it provides
a measure of the relative direction ofr andp with respect to
O. This directional correlation, which is not directly apparent
from the wave function, is manifestly present in the Wigner
function. It leads to a nonzeroc angular momentum even if
the q angular momentum vanishes. This is in complete ac-
cordance with the general relation~41!.

VI. KINETIC ENERGY IN THE PHASE-SPACE PICTURE

The Weyl transform of the kinetic-energy operatorT̂
given by the expression~3!, is simply

Tc5
p2

2M
. ~43!

To separate it into a classical-like radial part,Trad
c , and a

classical-like angular part,Tang
c , we note that the resolution

of the identity matrix given by Eq.~12! also holds in phase
space. Hence, we may also write

Tc5
1

2M
p•S S

r 2 1
1

2 (
i 51

D

( 8
j 51

D T i j

r 2 D •p. ~44!

But now the components ofp commute with the components
of r , and the analogue of Eq.~20! becomes

Tc5Trad
c 1Tang

c 5
1

2M S p•r

r D 2

1
L2

2Mr 2 ~45!

with L2 given by Eq.~38!. The phase-space version of the
radial kinetic energy is consequently

Trad
c 5

1

2M S p•r

r D 2

5
~p cosu!2

2M
. ~46!

The last expression is obtained by puttingr•p5rp cosu,
whereu is the angle betweenr and p. The angular kinetic
energy is

Tang
c 5

L2

2Mr 2 5
~p sinu!2

2M
. ~47!

The validity of the last expression is simplest verified by
noting thatp22(p cosu)25(psinu)2.

It is important to note thatTrad
c is not the Weyl transform

of T̂rad, nor isTang
c the Weyl transform ofT̂ang. To determine

the actual Weyl transforms ofT̂rad andT̂ang requires repeated
applications of the relation~36! to the expressions~21! and
~22!. We find, after some tedious algebra:

T̂rad°Trad
c 1

~D21!~D22!\2

8Mr 2 ~48!

and

T̂ang°Tang
c 2

~D21!~D22!\2

8Mr 2 . ~49!

The relation ~48! between the radial kinetic energies
might also have been obtained from the relation~25! by ex-
ploiting the following interesting relations:

p̂r°
r•p

r
~50!

and

p̂r
2°S r•p

r D 2

1
~D21!\2

4r 2 , ~51!

wherep̂r is the operator defined by Eq.~23!. These relations
may again be derived by repeated application of the expres-
sion ~36! for the star product.

We shall now apply the results of this and the previous
section to two important examples.

VII. A FREE-PARTICLE STATE

In this section we consider a minimum-uncertainty state
in three dimensions. The wave function for such a state is

c~r ,0!5S a

Ap
D 3/2

e21/2a2r 2
, ~52!

at a chosen initial timet50. The corresponding Wigner
function has the form

W~r ,p,0!5
1

~p\!3 e2a2r 22p2/a2h” 2
. ~53!

Let us write down the Wigner function at a later timet
under the assumption that we are dealing with a free particle.
We then know that the Wigner function will evolve in time in
exactly the same way as a classical phase-space distribution,
that is, it will develop according to the classical Liouville
equation@18,1,5#. Thus, the expression forW(r ,p,t) may be
obtained from that forW(r ,p,0) by simply replacingr by r
2tp/M . In this way we get
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W~r ,p,t !5
1

~p\!3 exp$2a2r 22@~ t/t!211#p2/a2\2

12~ t/t!r•p/\%, ~54!

where

t5
M

a2\
. ~55!

Sincer•p5rp cosu, whereu is the angle between the vec-
tors r andp, the Wigner function~54! only depends on the
three coordinatesr, p, andu. It is independent of the three
Euler angles that determine the orientation of the (r ,p) cross
in phase space. This independence of the Euler angles ex-
presses the overall rotational invariance of the state, that is, it
signifies that theq angular momentum is zero at all times.
However, evaluating the average ofL2 with the Wigner
functions~53! and ~54! gives 3

2 \2, as it should according to
the relation~41!.

We note that all angles betweenr andp are equally prob-
able att50, whereas small values ofu are favored for large
values oft. Thus, the correlation betweenr andp depends on
t. Such a statement would be impossible to defend in the
wave-function picture. However, in the phase-space picture it
is very meaningful. For att50, the Wigner function~54! is
concentrated about the origin of phase space. But in the
course of time, phase-space points with nonzero values ofp
will move to points with larger values ofr, with r and p
becoming more and more parallel. But this just amounts to
small values ofu being favored for large values oft, as in the
expression~54!.

This behavior is also reflected in the expectation values of
the radial and angular parts of the kinetic energy as a func-
tion of time, but only in the phase-space picture. It is readily
verified that the total kinetic energy associated with the wave
function ~52! has the value

^T̂&5
3

4

a2\2

M
. ~56!

It is, of course, independent oft. And sincec(r ,t) represents
an s state, the expectation value of theT̂ang of Eq. ~22! is
zero at all times. Thus we have

^T̂rad&5
3

4

a2\2

M
,

^T̂ang&50, ~57!

for all t.
In the phase-space picture, we must average the dynami-

cal phase-space functionsTc, Trad
c and Tang

c with the phase-
space function~54!. We denote the resulting energies byT,
Trad andTang, respectively:

T5
1

2M E E p2W~r ,p!drdp, ~58!

Trad5
1

2M E E ~p cosu!2W~r ,p!drdp, ~59!

and

Tang5
1

2M E E ~p sinu!2W~r ,p!drdp. ~60!

We have, of course, that

T5^T̂&. ~61!

Rather than evaluating the expressions~59! and ~60! by
direct integration, we may proceed in the following analyti-
cal way. According to Eqs.~48! and ~49!, with D53, Trad

c

andTang
c are the Weyl transforms of the operators

T̂rad8 5T̂rad2
\2

4Mr 2 ~62!

and

T̂ang8 5T̂ang1
\2

4Mr 2 , ~63!

respectively. Hence, we merely have to modify the values in
Eq. ~57! with the expectation value of\2/4Mr 2 to get the
values ofTrad and Tang. Evaluating this value by averaging
\2/4Mr 2 with the Wigner function~54! gives

K \2

4Mr 2L 5
a2\2

2M

1

~ t/t!211
. ~64!

Hence, we get

Trad5
a2\2

M S 3

4
2

1

2@~ t/t!211# D ,

Tang5
a2\2

M

1

2@~ t/t!211#
. ~65!

Thus, the classical-like kinetic energy is purely radial for
very large values oft. However, att50 only one third of the
kinetic energy is radial, corresponding to the value
(1/4)(a2\2/M ). The angular kinetic energy is twice as large.
This reflects the fact thatr andp are entirely uncorrelated at
t50, so thatp is twice as likely to be perpendicular tor as
being parallel tor .

The energiesT, Trad, and Tang are shown graphically in
Fig. 1, as functions oft.

VIII. THE HYDROGEN ATOM

Having studied a free-particle case, we shall next consider
a bound-state case, namely, the ground state of the three-
dimensional hydrogen atom. The wave function is now

c~r !5S 1

pa0
3D 1/2

e2r /a0, ~66!
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wherea0 is the Bohr radius,

a05
\2

M

4pe0

e2 . ~67!

M is the electron mass~we treat the nucleus as being infi-
nitely heavy!, and e is the magnitude of the elementary
charge. The state considered is a stationary state, and the
Wigner function is accordingly independent of time. As in
the previous example, we are dealing with ans state, so the
Wigner function is again independent of the Euler angles that
determine the orientation of the (r ,p) cross, but it does de-
pend on the angleu betweenr andp, and in fact in a more
complicated manner than in the expression~54!. In addition,
the Wigner function for the hydrogen atom takes both posi-
tive and negative values, whereas the Wigner function~54! is
non-negative at all times.

We have made a detailed study of the Wigner function for
the hydrogen atom in Ref.@6#. Our results were,inter alia,
presented as a series of contour maps for differentu values.
These maps showed that the Wigner function is everywhere
positive in what we called the dominant subspace, that is, the
part of phase space in whichr and p are perpendicular (u
5p/2). It is, in particular, large in the part of this subspace
obtained by puttingr 5a0 andp5\/a0 . This is the region of
phase space to which the ground-state motion was restricted
in early quantum mechanics@19#, since a Bohr orbit~in po-
sition space! is just a circle with radiusa0 , in which the
electron is supposed to move with the constant momentum
\/a0 . For other angles thanu5p/2, the Wigner function
develops negative regions. It is, in particular, strongly oscil-
lating around the value zero for small angles and angles ap-
proachingp.

We shall now see that this pronounced correlation be-
tween the directions ofr and p is strongly reflected in the
partitioning of the kinetic energy. The kinetic energy associ-
ated with the wave function~66! has the value

^T̂&5
\2

2Ma0
2 , ~68!

and sincec(r ) represents ans state we have, in analogy with
the expressions~57!:

^T̂rad&5
\2

2Ma0
2 ,

^T̂ang&50. ~69!

The relations~62! and~63! still hold, and it is readily found
that

K \2

4Mr 2L 5
\2

2Ma0
2 . ~70!

The analogue of Eq.~65! becomes therefore,

Trad50,

Tang5
\2

2Ma0
2 . ~71!

This is a remarkable result. For it shows that, in the
phase-space representation, the radial kinetic energy van-
ishes. The kinetic energy is purely angular. This is, of course,
in complete harmony with a picture in which the electron
primarily revolves around the nucleus rather than moving in
the radial direction.

The cases studied in this section and the previous one
have both been fors states. The expressions, we have derived
in the first six sections are, however, valid for any state in-
dependent of its angular momentum, but the interesting ef-
fects are most pronounced for thes states. With a minor
exception, the derived expressions are also valid for any di-
mensionD. A few comments concerning dimensions differ-
ent from three are, therefore, in order.

IX. ARBITRARY DIMENSIONS

The minor exception mentioned above has to do with
zero-angular-momentum states forD52. The relations~48!
and~49! suggest that the separation of the kinetic energy into
a radial part and an angular part is invariant under the Weyl
transformation forD52. This is, however, not quite true.
One must be aware that taking expectation values with the
expressions~48! and~49! involves taking expectation values
of 1/r 2, and such expectation values are undefined for wave
functions that stay finite atr 50 in a two-dimensional world.
This is because the volume element~6! only containsr to the
first power for D52. Hence, one cannot exploit operator
relations such as those of Eqs.~62! and ~63! for zero-
angular-momentum states. This, however, does not reduce

FIG. 1. Time dependence of the classical-like kinetic energy of
a free particle described by the Wigner function~54!. t is measured
in units oft5M /a2\, energies in units ofe5a2\2/M . The kinetic
energyT is separated into its radial partTrad and its angular part
Tang.
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the significance of the dynamical phase-space functionsTrad
c

and Tang
c . It just implies that the radial and angular kinetic

energiesTrad and Tang associated with them must be evalu-
ated directly by averaging with the Wigner function, using
the two-dimensional version of the expressions~59! and
~60!. For the two-dimensional equivalent of the Wigner func-
tion ~54! this produces at dependence of the kinetic energies
similar to that in Fig. 1, with the difference that the kinetic
energy is equally distributed on its radial and angular com-
ponents att50. This difference was to be expected since
there is only one perpendicular direction tor in two
dimensions.

Concerning the hydrogen atom, it is interesting to note
that the above conclusions for the ground state of the hydro-
gen atom in three dimensions remain valid for other values
of D. Thus, the kinetic energy is purely radial in the wave-
function picture, but purely angular in the phase-space pic-
ture. The ground-state wave function for theD dimensional
hydrogen atom has the general form

c~r !5S 1

SD

1

a0
D~n0/2!2n011~2n0!! D

1/2

e2r /n0a0, ~72!

whereSD is the total solid angle~8! and

n05
D21

2
. ~73!

The ground-state kinetic energy is

^T̂&5
\2

2Ma0
2n0

2 , ~74!

and forD.3 exactly the same value is found for the expec-
tation value of theD dependent term in Eqs.~48! and ~49!.
This confirms that the classical-like kinetic energy is, in fact,
purely angular forD.3.

For D52, we can again not draw on expressions like
those of Eqs.~62! and ~63!. We must perform the phase-
space integrations directly. Doing so shows that also forD
52, the classical-like kinetic energy is purely angular.

The said integrations over phase space are far from simple
to perform, because the Wigner function for the hydrogen
atom cannot be evaluated analytically@6,20#. A practical pro-
cedure is to expand the 1s wave function on a set of Gaus-
sians. For a linear combination ofN Gaussians, the Wigner
function may be determined analytically. The values ofTrad
andTang may then be calculated by combining analytical and
numerical integrations. ForN51, we have a Wigner function
similar to that of Eq.~53! for a free particle, but in two
dimensions only, leading toTrad5Tang. As N increases, the
contribution fromTrad is found to decrease, converging to
zero for large values ofN. This is shown graphically in
Fig. 2.

The information in Fig. 2 is not merely numerical. It
serves as yet another demonstration of the physical unique-
ness of the Coulomb potential. For instead of considering the
used wave functions to be approximate solutions for the
Coulomb potential, we may consider them to be exact solu-

tions for a different potential. AsN increases, this potential
becomes more and more Coulomb like. This suggests that
only for the Coulomb potential is the classical-like kinetic
energy purely angular.

The linear combinations of Gaussians used to prepare Fig.
2 were determined by the variational principle, following the
prescription given in Ref.@20#. In that work, we made ex-
plicit studies of the Wigner function for theD dimensional
hydrogen atom and presented contour curves for selected
values ofD. These contour maps show,inter alia, that the
oscillations between negative and positive values of the
Wigner function become weaker and weaker for higherD
values. We may, therefore, say that the phase-space distribu-
tions become more classical as the dimensionalityD
increases.

X. DISCUSSION

The problem of separating the kinetic energy of a particle
moving in a central field into a radial part and an angular part
has not attracted much attention in the past. It has been tac-
itly assumed that the separation offered by the wave-function
picture was the only sensible one. In the present paper, we
have challenged this view by putting focus upon the separa-
tion offered by the phase-space picture. This separation is
equally well defined. In contrast to the former, it throws
much light on the correlation between the directions of the
position vectorr and the momentum vectorp. There is no
way of discussing this correlation in the wave-function
picture.

The most amazing result of our analysis is probably our
finding that the kinetic energy in the ground state of the
hydrogen atom is purely radial in the wave-function picture,
and purely angular in the phase-space picture. This finding,

FIG. 2. With the ground-state wave function of the two-
dimensional hydrogen atom approximated by a linear combination
of N Gaussians, the figure shows theN dependence of the calculated
classical-like kinetic energyT, as well as its radial and angular
parts, Trad and Tang. Energies are measured in units ofe0

5\2/Ma0
2.
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which relates to arbitrary dimensions, reflects the great dif-
ference in the kind of intuition one may apply within the two
pictures. This difference is also well illustrated by focusing
upon the angular momentum. In the wave-function picture,
the angular momentum primarily refers to the behavior of the
state under rotations. In the phase-space picture it also refers
to the correlation between the directions ofr andp.

To properly understand a quantum system one must look
at it from different angles. The present paper shows once

again that the phase-space picture is a fruitful supplement to
the wave-function picture.
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