216 research outputs found
The influence of weight and fat on lamb prices revisited
Previous research has found inconsistencies in the valuation of weight and fat characteristics of lamb carcasses between the saleyard and wholesale markets. In this paper, recent New South Wales saleyard and wholesale price data on different classes of lamb are analysed using hedonic methods to determine the relative influence of weight and fat on prices received. Fat score 2 lambs are heavily discounted relative to fat score 3 lambs, and there are significant seasonal price differentials, but there are no significant premiums or discounts for weight or other fat characteristics. These results hold for both the saleyard and wholesale markets. The implication is that the efficiency of price discovery in the Australian lamb market has improved a little in recent years in the sense that premiums and discounts are now consistent across market levels. However consumers’ stated preferences for large lean lambs are not being reflected in price incentives generated in the live lamb and lamb carcass markets.lamb, marketing, hedonic models, carcass characteristics, Demand and Price Analysis, Livestock Production/Industries, Marketing,
Mimotopes and Proteome Analyses Using Human Genomic and cDNA Epitope Phage Display
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased
strategies. Phage display is a powerful tool to define protein-protein interactions by
generating peptide binders against target antigens. Epitope phage display libraries have the
potential to enrich coding exon sequences from human genomic loci. We evaluated genomic
and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster
and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA
library. A genomic display library containing 2 ×
10
6
clones with exon-sized inserts was
selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The
library was enriched significantly after two selection rounds and DNA sequencing revealed
unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone
insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as
‘mimotopes’ (mimetic sequences of the true epitope), correspond to open reading frames,
generate displayed peptides, and compete for binding during phage selection. The specificity
of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli
mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine
kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library,
screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in
genomic and cDNA phage libraries is essential for phage display-based protein validation
assays and two-hybrid phage approaches that examine protein-protein interactions. The
predominance of E. coli mimotopes suggests that the E. coli genome may be useful to
generate peptide diversity biased towards protein coding sequences
Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation
Open access to sequence data is a cornerstone of biology and biodiversity research, but has created tension under the United Nations Convention on Biological Diversity (CBD). Policy decisions could compromise research and development, unless a practical multilateral solution is implemented
Combinatorial Binding in Human and Mouse Embryonic Stem Cells Identifies Conserved Enhancers Active in Early Embryonic Development
Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES) cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas “gene regulatory hotspots” which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints
Accurate Distinction of Pathogenic from Benign CNVs in Mental Retardation
Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this study we developed and validated a novel computational method for differentiating between benign and MR-associated CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in the final version of a Naïve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most to the classifier's accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification method will be of value for objectively prioritizing CNVs in clinical research and diagnostics
Multiple Chromosomal Rearrangements Structured the Ancestral Vertebrate Hox-Bearing Protochromosomes
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates
13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients
Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-13C]phenylalanine breath test (13C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. 13C-phenylalanine (99 atom% 13C; 100 mg) was administered orally and the breath 13CO2 /12CO2 ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on 13C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ13CO2 (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ13CO2 was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on 13C-PBT indices in rats. Our results suggest that 13C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication
Transcriptional Enhancers in Protein-Coding Exons of Vertebrate Developmental Genes
Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA
- …